ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}+140x=261
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x^{2}+140x-261=261-261
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 261 ಕಳೆಯಿರಿ.
x^{2}+140x-261=0
261 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x=\frac{-140±\sqrt{140^{2}-4\left(-261\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 140 ಮತ್ತು c ಗೆ -261 ಬದಲಿಸಿ.
x=\frac{-140±\sqrt{19600-4\left(-261\right)}}{2}
ವರ್ಗ 140.
x=\frac{-140±\sqrt{19600+1044}}{2}
-261 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-140±\sqrt{20644}}{2}
1044 ಗೆ 19600 ಸೇರಿಸಿ.
x=\frac{-140±2\sqrt{5161}}{2}
20644 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{5161}-140}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-140±2\sqrt{5161}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{5161} ಗೆ -140 ಸೇರಿಸಿ.
x=\sqrt{5161}-70
2 ದಿಂದ -140+2\sqrt{5161} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{5161}-140}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-140±2\sqrt{5161}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -140 ದಿಂದ 2\sqrt{5161} ಕಳೆಯಿರಿ.
x=-\sqrt{5161}-70
2 ದಿಂದ -140-2\sqrt{5161} ಭಾಗಿಸಿ.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+140x=261
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+140x+70^{2}=261+70^{2}
70 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 140 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 70 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+140x+4900=261+4900
ವರ್ಗ 70.
x^{2}+140x+4900=5161
4900 ಗೆ 261 ಸೇರಿಸಿ.
\left(x+70\right)^{2}=5161
ಅಪವರ್ತನ x^{2}+140x+4900. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+70\right)^{2}}=\sqrt{5161}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+70=\sqrt{5161} x+70=-\sqrt{5161}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 70 ಕಳೆಯಿರಿ.
x^{2}+140x=261
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x^{2}+140x-261=261-261
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 261 ಕಳೆಯಿರಿ.
x^{2}+140x-261=0
261 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x=\frac{-140±\sqrt{140^{2}-4\left(-261\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 140 ಮತ್ತು c ಗೆ -261 ಬದಲಿಸಿ.
x=\frac{-140±\sqrt{19600-4\left(-261\right)}}{2}
ವರ್ಗ 140.
x=\frac{-140±\sqrt{19600+1044}}{2}
-261 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-140±\sqrt{20644}}{2}
1044 ಗೆ 19600 ಸೇರಿಸಿ.
x=\frac{-140±2\sqrt{5161}}{2}
20644 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{5161}-140}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-140±2\sqrt{5161}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{5161} ಗೆ -140 ಸೇರಿಸಿ.
x=\sqrt{5161}-70
2 ದಿಂದ -140+2\sqrt{5161} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{5161}-140}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-140±2\sqrt{5161}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -140 ದಿಂದ 2\sqrt{5161} ಕಳೆಯಿರಿ.
x=-\sqrt{5161}-70
2 ದಿಂದ -140-2\sqrt{5161} ಭಾಗಿಸಿ.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+140x=261
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+140x+70^{2}=261+70^{2}
70 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 140 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 70 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+140x+4900=261+4900
ವರ್ಗ 70.
x^{2}+140x+4900=5161
4900 ಗೆ 261 ಸೇರಿಸಿ.
\left(x+70\right)^{2}=5161
ಅಪವರ್ತನ x^{2}+140x+4900. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+70\right)^{2}}=\sqrt{5161}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+70=\sqrt{5161} x+70=-\sqrt{5161}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 70 ಕಳೆಯಿರಿ.