x ಪರಿಹರಿಸಿ
x\in \left(-\infty,-1\right)\cup \left(\frac{20}{7},\infty\right)
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}+\left(\frac{13}{7}-2x\right)x+4-\frac{8}{7}<0
\frac{13}{7} ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ \frac{8}{7} ಕಳೆಯಿರಿ.
x^{2}+\frac{13}{7}x-2x^{2}+4-\frac{8}{7}<0
x ದಿಂದ \frac{13}{7}-2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-x^{2}+\frac{13}{7}x+4-\frac{8}{7}<0
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
-x^{2}+\frac{13}{7}x+\frac{20}{7}<0
\frac{20}{7} ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ \frac{8}{7} ಕಳೆಯಿರಿ.
x^{2}-\frac{13}{7}x-\frac{20}{7}>0
ಅತ್ಯಧಿ ಘಾತದ ಗುಣಾಕಂವನ್ನು -x^{2}+\frac{13}{7}x+\frac{20}{7} ಧನಾತ್ಮಕವಾಗಿ ಮಾಡಲು ಅಸಮಾನವಾಗಿರುವುದನ್ನು -1 ರಿಂದ ಗುಣಿಸಿ. -1 ಎಂಬುದು ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಅಸಮಾನತೆಯ ದಿಕ್ಕು ಬದಲಾಗಿದೆ.
x^{2}-\frac{13}{7}x-\frac{20}{7}=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-\frac{13}{7}\right)±\sqrt{\left(-\frac{13}{7}\right)^{2}-4\times 1\left(-\frac{20}{7}\right)}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -\frac{13}{7} ಅನ್ನು ಮತ್ತು c ಗೆ -\frac{20}{7} ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{\frac{13}{7}±\frac{27}{7}}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=\frac{20}{7} x=-1
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{13}{7}±\frac{27}{7}}{2} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
\left(x-\frac{20}{7}\right)\left(x+1\right)>0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-\frac{20}{7}<0 x+1<0
ಧನಾತ್ಮಕ, ಎಂದು ಉತ್ಪನ್ನಕ್ಕಾಗಿ x-\frac{20}{7} ಮತ್ತು x+1 ಋಣಾತ್ಮಕ ಅಥವಾ ಎರಡೂ ಧನಾತ್ಮಕ ಹೊಂದಿಲ್ಲ. x-\frac{20}{7} ಮತ್ತು x+1 ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x<-1
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x<-1 ಆಗಿದೆ.
x+1>0 x-\frac{20}{7}>0
x-\frac{20}{7} ಮತ್ತು x+1 ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x>\frac{20}{7}
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x>\frac{20}{7} ಆಗಿದೆ.
x<-1\text{; }x>\frac{20}{7}
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}