x ಪರಿಹರಿಸಿ
x=\frac{-\sqrt{29}-5}{2}\approx -5.192582404
x = \frac{\sqrt{29} + 5}{2} \approx 5.192582404
x=\frac{\sqrt{29}-5}{2}\approx 0.192582404
x=\frac{5-\sqrt{29}}{2}\approx -0.192582404
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}x^{2}+1=27x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x^{2} ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{4}+1=27x^{2}
ಒಂದೇ ಮೂಲ ಸಂಖ್ಯೆಯಿಂದ ಪರಿಮಾಣಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಲು, ಅವುಗಳ ಘಾತಗಳನ್ನು ಸೇರಿಸಿ. 4 ಪಡೆಯಲು 2 ಮತ್ತು 2 ಸೇರಿಸಿ.
x^{4}+1-27x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 27x^{2} ಕಳೆಯಿರಿ.
t^{2}-27t+1=0
x^{2} ಗಾಗಿ t ಬದಲಿಸಿ.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -27 ಅನ್ನು ಮತ್ತು c ಗೆ 1 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
t=\frac{27±5\sqrt{29}}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
t=\frac{5\sqrt{29}+27}{2} t=\frac{27-5\sqrt{29}}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{27±5\sqrt{29}}{2} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=\frac{\sqrt{29}+5}{2} x=-\frac{\sqrt{29}+5}{2} x=-\frac{5-\sqrt{29}}{2} x=\frac{5-\sqrt{29}}{2}
x=t^{2} ಕಾರಣದಿಂದ, ಪ್ರತಿ t ಗೆ x=±\sqrt{t} ಅನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವ ಮೂಲಕ ಪರಿಹಾರಗಳನ್ನು ಪಡೆದುಕೊಳ್ಳಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}