ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}=\left(\sqrt{3-\frac{x}{2}}\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
x^{2}=3-\frac{x}{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{3-\frac{x}{2}} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 3-\frac{x}{2} ಪಡೆಯಿರಿ.
2x^{2}=6-x
2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x^{2}-6=-x
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
2x^{2}-6+x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
2x^{2}+x-6=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=1 ab=2\left(-6\right)=-12
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 2x^{2}+ax+bx-6 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,12 -2,6 -3,4
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -12 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+12=11 -2+6=4 -3+4=1
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-3 b=4
ಪರಿಹಾರವು 1 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(2x^{2}-3x\right)+\left(4x-6\right)
\left(2x^{2}-3x\right)+\left(4x-6\right) ನ ಹಾಗೆ 2x^{2}+x-6 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(2x-3\right)+2\left(2x-3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(2x-3\right)\left(x+2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 2x-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{3}{2} x=-2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 2x-3=0 ಮತ್ತು x+2=0 ಪರಿಹರಿಸಿ.
\frac{3}{2}=\sqrt{3-\frac{\frac{3}{2}}{2}}
x=\sqrt{3-\frac{x}{2}} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ \frac{3}{2} ಬದಲಿಸಿ.
\frac{3}{2}=\frac{3}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=\frac{3}{2} ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
-2=\sqrt{3-\frac{-2}{2}}
x=\sqrt{3-\frac{x}{2}} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ -2 ಬದಲಿಸಿ.
-2=2
ಸರಳೀಕೃತಗೊಳಿಸಿ. x=-2 ಮೌಲ್ಯವು ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ ಏಕೆಂದರೆ ಎಡ ಮತ್ತು ಬಲಬದಿಯಲ್ಲಿ ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಿವೆ.
x=\frac{3}{2}
ಸಮೀಕರಣ x=\sqrt{-\frac{x}{2}+3} ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.