ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x-\frac{7}{5x-3}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{7}{5x-3} ಕಳೆಯಿರಿ.
\frac{x\left(5x-3\right)}{5x-3}-\frac{7}{5x-3}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{5x-3}{5x-3} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{x\left(5x-3\right)-7}{5x-3}=0
\frac{x\left(5x-3\right)}{5x-3} ಮತ್ತು \frac{7}{5x-3} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{5x^{2}-3x-7}{5x-3}=0
x\left(5x-3\right)-7 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
5x^{2}-3x-7=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ \frac{3}{5} ಗೆ ಸಮನಾಗಿರಬಾರದು. 5x-3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-7\right)}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ -3 ಮತ್ತು c ಗೆ -7 ಬದಲಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-7\right)}}{2\times 5}
ವರ್ಗ -3.
x=\frac{-\left(-3\right)±\sqrt{9-20\left(-7\right)}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9+140}}{2\times 5}
-7 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{149}}{2\times 5}
140 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{3±\sqrt{149}}{2\times 5}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
x=\frac{3±\sqrt{149}}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{149}+3}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±\sqrt{149}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{149} ಗೆ 3 ಸೇರಿಸಿ.
x=\frac{3-\sqrt{149}}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±\sqrt{149}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ \sqrt{149} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{149}+3}{10} x=\frac{3-\sqrt{149}}{10}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x-\frac{7}{5x-3}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{7}{5x-3} ಕಳೆಯಿರಿ.
\frac{x\left(5x-3\right)}{5x-3}-\frac{7}{5x-3}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{5x-3}{5x-3} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{x\left(5x-3\right)-7}{5x-3}=0
\frac{x\left(5x-3\right)}{5x-3} ಮತ್ತು \frac{7}{5x-3} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{5x^{2}-3x-7}{5x-3}=0
x\left(5x-3\right)-7 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
5x^{2}-3x-7=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ \frac{3}{5} ಗೆ ಸಮನಾಗಿರಬಾರದು. 5x-3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
5x^{2}-3x=7
ಎರಡೂ ಬದಿಗಳಿಗೆ 7 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{5x^{2}-3x}{5}=\frac{7}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{3}{5}x=\frac{7}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=\frac{7}{5}+\left(-\frac{3}{10}\right)^{2}
-\frac{3}{10} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{3}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{10} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{7}{5}+\frac{9}{100}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{10} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{149}{100}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{100} ಗೆ \frac{7}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{3}{10}\right)^{2}=\frac{149}{100}
ಅಪವರ್ತನ x^{2}-\frac{3}{5}x+\frac{9}{100}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{\frac{149}{100}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{10}=\frac{\sqrt{149}}{10} x-\frac{3}{10}=-\frac{\sqrt{149}}{10}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{149}+3}{10} x=\frac{3-\sqrt{149}}{10}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{10} ಸೇರಿಸಿ.