u ಪರಿಹರಿಸಿ
u=16
u=25
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
a+b=-41 ab=400
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, u^{2}+\left(a+b\right)u+ab=\left(u+a\right)\left(u+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು u^{2}-41u+400 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-400 -2,-200 -4,-100 -5,-80 -8,-50 -10,-40 -16,-25 -20,-20
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 400 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-400=-401 -2-200=-202 -4-100=-104 -5-80=-85 -8-50=-58 -10-40=-50 -16-25=-41 -20-20=-40
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-25 b=-16
ಪರಿಹಾರವು -41 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(u-25\right)\left(u-16\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(u+a\right)\left(u+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
u=25 u=16
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, u-25=0 ಮತ್ತು u-16=0 ಪರಿಹರಿಸಿ.
a+b=-41 ab=1\times 400=400
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು u^{2}+au+bu+400 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-400 -2,-200 -4,-100 -5,-80 -8,-50 -10,-40 -16,-25 -20,-20
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 400 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-400=-401 -2-200=-202 -4-100=-104 -5-80=-85 -8-50=-58 -10-40=-50 -16-25=-41 -20-20=-40
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-25 b=-16
ಪರಿಹಾರವು -41 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(u^{2}-25u\right)+\left(-16u+400\right)
\left(u^{2}-25u\right)+\left(-16u+400\right) ನ ಹಾಗೆ u^{2}-41u+400 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
u\left(u-25\right)-16\left(u-25\right)
ಮೊದಲನೆಯದರಲ್ಲಿ u ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -16 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(u-25\right)\left(u-16\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ u-25 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
u=25 u=16
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, u-25=0 ಮತ್ತು u-16=0 ಪರಿಹರಿಸಿ.
u^{2}-41u+400=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
u=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 400}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -41 ಮತ್ತು c ಗೆ 400 ಬದಲಿಸಿ.
u=\frac{-\left(-41\right)±\sqrt{1681-4\times 400}}{2}
ವರ್ಗ -41.
u=\frac{-\left(-41\right)±\sqrt{1681-1600}}{2}
400 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
u=\frac{-\left(-41\right)±\sqrt{81}}{2}
-1600 ಗೆ 1681 ಸೇರಿಸಿ.
u=\frac{-\left(-41\right)±9}{2}
81 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
u=\frac{41±9}{2}
-41 ನ ವಿಲೋಮವು 41 ಆಗಿದೆ.
u=\frac{50}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ u=\frac{41±9}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 9 ಗೆ 41 ಸೇರಿಸಿ.
u=25
2 ದಿಂದ 50 ಭಾಗಿಸಿ.
u=\frac{32}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ u=\frac{41±9}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 41 ದಿಂದ 9 ಕಳೆಯಿರಿ.
u=16
2 ದಿಂದ 32 ಭಾಗಿಸಿ.
u=25 u=16
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
u^{2}-41u+400=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
u^{2}-41u+400-400=-400
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 400 ಕಳೆಯಿರಿ.
u^{2}-41u=-400
400 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
u^{2}-41u+\left(-\frac{41}{2}\right)^{2}=-400+\left(-\frac{41}{2}\right)^{2}
-\frac{41}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -41 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{41}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
u^{2}-41u+\frac{1681}{4}=-400+\frac{1681}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{41}{2} ವರ್ಗಗೊಳಿಸಿ.
u^{2}-41u+\frac{1681}{4}=\frac{81}{4}
\frac{1681}{4} ಗೆ -400 ಸೇರಿಸಿ.
\left(u-\frac{41}{2}\right)^{2}=\frac{81}{4}
ಅಪವರ್ತನ u^{2}-41u+\frac{1681}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(u-\frac{41}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
u-\frac{41}{2}=\frac{9}{2} u-\frac{41}{2}=-\frac{9}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
u=25 u=16
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{41}{2} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}