ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{t^{2}}{16}-6t-2^{8}=0
4 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 16 ಪಡೆಯಿರಿ.
\frac{t^{2}}{16}-6t-256=0
8 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 256 ಪಡೆಯಿರಿ.
t^{2}-96t-4096=0
16 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
a+b=-96 ab=-4096
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು t^{2}-96t-4096 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-4096 2,-2048 4,-1024 8,-512 16,-256 32,-128 64,-64
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -4096 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-4096=-4095 2-2048=-2046 4-1024=-1020 8-512=-504 16-256=-240 32-128=-96 64-64=0
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-128 b=32
ಪರಿಹಾರವು -96 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(t-128\right)\left(t+32\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(t+a\right)\left(t+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
t=128 t=-32
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, t-128=0 ಮತ್ತು t+32=0 ಪರಿಹರಿಸಿ.
\frac{t^{2}}{16}-6t-2^{8}=0
4 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 16 ಪಡೆಯಿರಿ.
\frac{t^{2}}{16}-6t-256=0
8 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 256 ಪಡೆಯಿರಿ.
t^{2}-96t-4096=0
16 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
a+b=-96 ab=1\left(-4096\right)=-4096
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು t^{2}+at+bt-4096 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-4096 2,-2048 4,-1024 8,-512 16,-256 32,-128 64,-64
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -4096 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-4096=-4095 2-2048=-2046 4-1024=-1020 8-512=-504 16-256=-240 32-128=-96 64-64=0
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-128 b=32
ಪರಿಹಾರವು -96 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(t^{2}-128t\right)+\left(32t-4096\right)
\left(t^{2}-128t\right)+\left(32t-4096\right) ನ ಹಾಗೆ t^{2}-96t-4096 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
t\left(t-128\right)+32\left(t-128\right)
ಮೊದಲನೆಯದರಲ್ಲಿ t ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 32 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(t-128\right)\left(t+32\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ t-128 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
t=128 t=-32
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, t-128=0 ಮತ್ತು t+32=0 ಪರಿಹರಿಸಿ.
\frac{t^{2}}{16}-6t-2^{8}=0
4 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 16 ಪಡೆಯಿರಿ.
\frac{t^{2}}{16}-6t-256=0
8 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 256 ಪಡೆಯಿರಿ.
t^{2}-96t-4096=0
16 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
t=\frac{-\left(-96\right)±\sqrt{\left(-96\right)^{2}-4\left(-4096\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -96 ಮತ್ತು c ಗೆ -4096 ಬದಲಿಸಿ.
t=\frac{-\left(-96\right)±\sqrt{9216-4\left(-4096\right)}}{2}
ವರ್ಗ -96.
t=\frac{-\left(-96\right)±\sqrt{9216+16384}}{2}
-4096 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-\left(-96\right)±\sqrt{25600}}{2}
16384 ಗೆ 9216 ಸೇರಿಸಿ.
t=\frac{-\left(-96\right)±160}{2}
25600 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{96±160}{2}
-96 ನ ವಿಲೋಮವು 96 ಆಗಿದೆ.
t=\frac{256}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{96±160}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 160 ಗೆ 96 ಸೇರಿಸಿ.
t=128
2 ದಿಂದ 256 ಭಾಗಿಸಿ.
t=-\frac{64}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{96±160}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 96 ದಿಂದ 160 ಕಳೆಯಿರಿ.
t=-32
2 ದಿಂದ -64 ಭಾಗಿಸಿ.
t=128 t=-32
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\frac{t^{2}}{16}-6t-2^{8}=0
4 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 16 ಪಡೆಯಿರಿ.
\frac{t^{2}}{16}-6t-256=0
8 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 256 ಪಡೆಯಿರಿ.
\frac{t^{2}}{16}-6t=256
ಎರಡೂ ಬದಿಗಳಿಗೆ 256 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
t^{2}-96t=4096
16 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
t^{2}-96t+\left(-48\right)^{2}=4096+\left(-48\right)^{2}
-48 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -96 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -48 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}-96t+2304=4096+2304
ವರ್ಗ -48.
t^{2}-96t+2304=6400
2304 ಗೆ 4096 ಸೇರಿಸಿ.
\left(t-48\right)^{2}=6400
ಅಪವರ್ತನ t^{2}-96t+2304. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t-48\right)^{2}}=\sqrt{6400}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t-48=80 t-48=-80
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=128 t=-32
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 48 ಸೇರಿಸಿ.