ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
s ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=-13 ab=36
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, s^{2}+\left(a+b\right)s+ab=\left(s+a\right)\left(s+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು s^{2}-13s+36 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 36 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-9 b=-4
ಪರಿಹಾರವು -13 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(s-9\right)\left(s-4\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(s+a\right)\left(s+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
s=9 s=4
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, s-9=0 ಮತ್ತು s-4=0 ಪರಿಹರಿಸಿ.
a+b=-13 ab=1\times 36=36
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು s^{2}+as+bs+36 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 36 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-9 b=-4
ಪರಿಹಾರವು -13 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(s^{2}-9s\right)+\left(-4s+36\right)
\left(s^{2}-9s\right)+\left(-4s+36\right) ನ ಹಾಗೆ s^{2}-13s+36 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
s\left(s-9\right)-4\left(s-9\right)
ಮೊದಲನೆಯದರಲ್ಲಿ s ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(s-9\right)\left(s-4\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ s-9 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
s=9 s=4
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, s-9=0 ಮತ್ತು s-4=0 ಪರಿಹರಿಸಿ.
s^{2}-13s+36=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
s=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 36}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -13 ಮತ್ತು c ಗೆ 36 ಬದಲಿಸಿ.
s=\frac{-\left(-13\right)±\sqrt{169-4\times 36}}{2}
ವರ್ಗ -13.
s=\frac{-\left(-13\right)±\sqrt{169-144}}{2}
36 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
s=\frac{-\left(-13\right)±\sqrt{25}}{2}
-144 ಗೆ 169 ಸೇರಿಸಿ.
s=\frac{-\left(-13\right)±5}{2}
25 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
s=\frac{13±5}{2}
-13 ನ ವಿಲೋಮವು 13 ಆಗಿದೆ.
s=\frac{18}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ s=\frac{13±5}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ಗೆ 13 ಸೇರಿಸಿ.
s=9
2 ದಿಂದ 18 ಭಾಗಿಸಿ.
s=\frac{8}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ s=\frac{13±5}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 13 ದಿಂದ 5 ಕಳೆಯಿರಿ.
s=4
2 ದಿಂದ 8 ಭಾಗಿಸಿ.
s=9 s=4
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
s^{2}-13s+36=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
s^{2}-13s+36-36=-36
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 36 ಕಳೆಯಿರಿ.
s^{2}-13s=-36
36 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
s^{2}-13s+\left(-\frac{13}{2}\right)^{2}=-36+\left(-\frac{13}{2}\right)^{2}
-\frac{13}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -13 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{13}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
s^{2}-13s+\frac{169}{4}=-36+\frac{169}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{13}{2} ವರ್ಗಗೊಳಿಸಿ.
s^{2}-13s+\frac{169}{4}=\frac{25}{4}
\frac{169}{4} ಗೆ -36 ಸೇರಿಸಿ.
\left(s-\frac{13}{2}\right)^{2}=\frac{25}{4}
ಅಪವರ್ತನ s^{2}-13s+\frac{169}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(s-\frac{13}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
s-\frac{13}{2}=\frac{5}{2} s-\frac{13}{2}=-\frac{5}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
s=9 s=4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{13}{2} ಸೇರಿಸಿ.