ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
r ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

r^{2}-5r+9-r=0
ಎರಡೂ ಕಡೆಗಳಿಂದ r ಕಳೆಯಿರಿ.
r^{2}-6r+9=0
-6r ಪಡೆದುಕೊಳ್ಳಲು -5r ಮತ್ತು -r ಕೂಡಿಸಿ.
a+b=-6 ab=9
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು r^{2}-6r+9 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-9 -3,-3
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 9 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-9=-10 -3-3=-6
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-3 b=-3
ಪರಿಹಾರವು -6 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(r-3\right)\left(r-3\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(r+a\right)\left(r+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
\left(r-3\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
r=3
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, r-3=0 ಪರಿಹರಿಸಿ.
r^{2}-5r+9-r=0
ಎರಡೂ ಕಡೆಗಳಿಂದ r ಕಳೆಯಿರಿ.
r^{2}-6r+9=0
-6r ಪಡೆದುಕೊಳ್ಳಲು -5r ಮತ್ತು -r ಕೂಡಿಸಿ.
a+b=-6 ab=1\times 9=9
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು r^{2}+ar+br+9 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-9 -3,-3
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 9 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-9=-10 -3-3=-6
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-3 b=-3
ಪರಿಹಾರವು -6 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(r^{2}-3r\right)+\left(-3r+9\right)
\left(r^{2}-3r\right)+\left(-3r+9\right) ನ ಹಾಗೆ r^{2}-6r+9 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
r\left(r-3\right)-3\left(r-3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ r ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(r-3\right)\left(r-3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ r-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(r-3\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
r=3
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, r-3=0 ಪರಿಹರಿಸಿ.
r^{2}-5r+9-r=0
ಎರಡೂ ಕಡೆಗಳಿಂದ r ಕಳೆಯಿರಿ.
r^{2}-6r+9=0
-6r ಪಡೆದುಕೊಳ್ಳಲು -5r ಮತ್ತು -r ಕೂಡಿಸಿ.
r=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -6 ಮತ್ತು c ಗೆ 9 ಬದಲಿಸಿ.
r=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
ವರ್ಗ -6.
r=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
r=\frac{-\left(-6\right)±\sqrt{0}}{2}
-36 ಗೆ 36 ಸೇರಿಸಿ.
r=-\frac{-6}{2}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
r=\frac{6}{2}
-6 ನ ವಿಲೋಮವು 6 ಆಗಿದೆ.
r=3
2 ದಿಂದ 6 ಭಾಗಿಸಿ.
r^{2}-5r+9-r=0
ಎರಡೂ ಕಡೆಗಳಿಂದ r ಕಳೆಯಿರಿ.
r^{2}-6r+9=0
-6r ಪಡೆದುಕೊಳ್ಳಲು -5r ಮತ್ತು -r ಕೂಡಿಸಿ.
\left(r-3\right)^{2}=0
ಅಪವರ್ತನ r^{2}-6r+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(r-3\right)^{2}}=\sqrt{0}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
r-3=0 r-3=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
r=3 r=3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3 ಸೇರಿಸಿ.
r=3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ. ಪರಿಹಾರಗಳು ಒಂದೇ ಆಗಿವೆ.