ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

n^{2}-2n=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2n ಕಳೆಯಿರಿ.
n\left(n-2\right)=0
n ಅಪವರ್ತನಗೊಳಿಸಿ.
n=0 n=2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, n=0 ಮತ್ತು n-2=0 ಪರಿಹರಿಸಿ.
n^{2}-2n=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2n ಕಳೆಯಿರಿ.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -2 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
n=\frac{-\left(-2\right)±2}{2}
\left(-2\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{2±2}{2}
-2 ನ ವಿಲೋಮವು 2 ಆಗಿದೆ.
n=\frac{4}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{2±2}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ಗೆ 2 ಸೇರಿಸಿ.
n=2
2 ದಿಂದ 4 ಭಾಗಿಸಿ.
n=\frac{0}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{2±2}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ 2 ಕಳೆಯಿರಿ.
n=0
2 ದಿಂದ 0 ಭಾಗಿಸಿ.
n=2 n=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
n^{2}-2n=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2n ಕಳೆಯಿರಿ.
n^{2}-2n+1=1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
\left(n-1\right)^{2}=1
ಅಪವರ್ತನ n^{2}-2n+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-1\right)^{2}}=\sqrt{1}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-1=1 n-1=-1
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=2 n=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.