m ಪರಿಹರಿಸಿ
m=\sqrt{34}+3\approx 8.830951895
m=3-\sqrt{34}\approx -2.830951895
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
m^{2}-6m-25=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-25\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -6 ಮತ್ತು c ಗೆ -25 ಬದಲಿಸಿ.
m=\frac{-\left(-6\right)±\sqrt{36-4\left(-25\right)}}{2}
ವರ್ಗ -6.
m=\frac{-\left(-6\right)±\sqrt{36+100}}{2}
-25 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{-\left(-6\right)±\sqrt{136}}{2}
100 ಗೆ 36 ಸೇರಿಸಿ.
m=\frac{-\left(-6\right)±2\sqrt{34}}{2}
136 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m=\frac{6±2\sqrt{34}}{2}
-6 ನ ವಿಲೋಮವು 6 ಆಗಿದೆ.
m=\frac{2\sqrt{34}+6}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{6±2\sqrt{34}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{34} ಗೆ 6 ಸೇರಿಸಿ.
m=\sqrt{34}+3
2 ದಿಂದ 6+2\sqrt{34} ಭಾಗಿಸಿ.
m=\frac{6-2\sqrt{34}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{6±2\sqrt{34}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ದಿಂದ 2\sqrt{34} ಕಳೆಯಿರಿ.
m=3-\sqrt{34}
2 ದಿಂದ 6-2\sqrt{34} ಭಾಗಿಸಿ.
m=\sqrt{34}+3 m=3-\sqrt{34}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
m^{2}-6m-25=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
m^{2}-6m-25-\left(-25\right)=-\left(-25\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 25 ಸೇರಿಸಿ.
m^{2}-6m=-\left(-25\right)
-25 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
m^{2}-6m=25
0 ದಿಂದ -25 ಕಳೆಯಿರಿ.
m^{2}-6m+\left(-3\right)^{2}=25+\left(-3\right)^{2}
-3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
m^{2}-6m+9=25+9
ವರ್ಗ -3.
m^{2}-6m+9=34
9 ಗೆ 25 ಸೇರಿಸಿ.
\left(m-3\right)^{2}=34
ಅಪವರ್ತನ m^{2}-6m+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(m-3\right)^{2}}=\sqrt{34}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m-3=\sqrt{34} m-3=-\sqrt{34}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
m=\sqrt{34}+3 m=3-\sqrt{34}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}