ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
m ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

m^{2}+2m=7
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
m^{2}+2m-7=7-7
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 7 ಕಳೆಯಿರಿ.
m^{2}+2m-7=0
7 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
m=\frac{-2±\sqrt{2^{2}-4\left(-7\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 2 ಮತ್ತು c ಗೆ -7 ಬದಲಿಸಿ.
m=\frac{-2±\sqrt{4-4\left(-7\right)}}{2}
ವರ್ಗ 2.
m=\frac{-2±\sqrt{4+28}}{2}
-7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{-2±\sqrt{32}}{2}
28 ಗೆ 4 ಸೇರಿಸಿ.
m=\frac{-2±4\sqrt{2}}{2}
32 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m=\frac{4\sqrt{2}-2}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{-2±4\sqrt{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{2} ಗೆ -2 ಸೇರಿಸಿ.
m=2\sqrt{2}-1
2 ದಿಂದ 4\sqrt{2}-2 ಭಾಗಿಸಿ.
m=\frac{-4\sqrt{2}-2}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{-2±4\sqrt{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -2 ದಿಂದ 4\sqrt{2} ಕಳೆಯಿರಿ.
m=-2\sqrt{2}-1
2 ದಿಂದ -2-4\sqrt{2} ಭಾಗಿಸಿ.
m=2\sqrt{2}-1 m=-2\sqrt{2}-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
m^{2}+2m=7
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
m^{2}+2m+1^{2}=7+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
m^{2}+2m+1=7+1
ವರ್ಗ 1.
m^{2}+2m+1=8
1 ಗೆ 7 ಸೇರಿಸಿ.
\left(m+1\right)^{2}=8
ಅಪವರ್ತನ m^{2}+2m+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(m+1\right)^{2}}=\sqrt{8}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m+1=2\sqrt{2} m+1=-2\sqrt{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
m=2\sqrt{2}-1 m=-2\sqrt{2}-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.