x ಪರಿಹರಿಸಿ
x=-\frac{4\left(1-m\right)}{m+2}
m\neq -2
m ಪರಿಹರಿಸಿ
m=\frac{2\left(x+2\right)}{4-x}
x\neq 4
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
m\left(-x+4\right)=2\left(x+2\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 4 ಗೆ ಸಮನಾಗಿರಬಾರದು. -x+4 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-mx+4m=2\left(x+2\right)
-x+4 ದಿಂದ m ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-mx+4m=2x+4
x+2 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-mx+4m-2x=4
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
-mx-2x=4-4m
ಎರಡೂ ಕಡೆಗಳಿಂದ 4m ಕಳೆಯಿರಿ.
\left(-m-2\right)x=4-4m
x ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(-m-2\right)x}{-m-2}=\frac{4-4m}{-m-2}
-m-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{4-4m}{-m-2}
-m-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -m-2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x=-\frac{4\left(1-m\right)}{m+2}
-m-2 ದಿಂದ 4-4m ಭಾಗಿಸಿ.
x=-\frac{4\left(1-m\right)}{m+2}\text{, }x\neq 4
x ವೇರಿಯೇಬಲ್ 4 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}