ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
k ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

k^{2}-k=8
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
k^{2}-k-8=8-8
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
k^{2}-k-8=0
8 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
k=\frac{-\left(-1\right)±\sqrt{1-4\left(-8\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -1 ಮತ್ತು c ಗೆ -8 ಬದಲಿಸಿ.
k=\frac{-\left(-1\right)±\sqrt{1+32}}{2}
-8 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{-\left(-1\right)±\sqrt{33}}{2}
32 ಗೆ 1 ಸೇರಿಸಿ.
k=\frac{1±\sqrt{33}}{2}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
k=\frac{\sqrt{33}+1}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{1±\sqrt{33}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{33} ಗೆ 1 ಸೇರಿಸಿ.
k=\frac{1-\sqrt{33}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{1±\sqrt{33}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ \sqrt{33} ಕಳೆಯಿರಿ.
k=\frac{\sqrt{33}+1}{2} k=\frac{1-\sqrt{33}}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
k^{2}-k=8
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
k^{2}-k+\left(-\frac{1}{2}\right)^{2}=8+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -1 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
k^{2}-k+\frac{1}{4}=8+\frac{1}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
k^{2}-k+\frac{1}{4}=\frac{33}{4}
\frac{1}{4} ಗೆ 8 ಸೇರಿಸಿ.
\left(k-\frac{1}{2}\right)^{2}=\frac{33}{4}
ಅಪವರ್ತನ k^{2}-k+\frac{1}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(k-\frac{1}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
k-\frac{1}{2}=\frac{\sqrt{33}}{2} k-\frac{1}{2}=-\frac{\sqrt{33}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
k=\frac{\sqrt{33}+1}{2} k=\frac{1-\sqrt{33}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{2} ಸೇರಿಸಿ.