ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

5\left(-x^{2}+2x+3\right)
5 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=2 ab=-3=-3
-x^{2}+2x+3 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು -x^{2}+ax+bx+3 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=3 b=-1
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(-x^{2}+3x\right)+\left(-x+3\right)
\left(-x^{2}+3x\right)+\left(-x+3\right) ನ ಹಾಗೆ -x^{2}+2x+3 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-x\left(x-3\right)-\left(x-3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-3\right)\left(-x-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
5\left(x-3\right)\left(-x-1\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
-5x^{2}+10x+15=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\times 15}}{2\left(-5\right)}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-10±\sqrt{100-4\left(-5\right)\times 15}}{2\left(-5\right)}
ವರ್ಗ 10.
x=\frac{-10±\sqrt{100+20\times 15}}{2\left(-5\right)}
-5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{100+300}}{2\left(-5\right)}
15 ಅನ್ನು 20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{400}}{2\left(-5\right)}
300 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-10±20}{2\left(-5\right)}
400 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-10±20}{-10}
-5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{10}{-10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±20}{-10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 20 ಗೆ -10 ಸೇರಿಸಿ.
x=-1
-10 ದಿಂದ 10 ಭಾಗಿಸಿ.
x=-\frac{30}{-10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±20}{-10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 20 ಕಳೆಯಿರಿ.
x=3
-10 ದಿಂದ -30 ಭಾಗಿಸಿ.
-5x^{2}+10x+15=-5\left(x-\left(-1\right)\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ -1 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ 3 ನ್ನು ಬಳಸಿ.
-5x^{2}+10x+15=-5\left(x+1\right)\left(x-3\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.