ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=5 ab=1\times 4=4
ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು h^{2}+ah+bh+4 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,4 2,2
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 4 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+4=5 2+2=4
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=1 b=4
ಪರಿಹಾರವು 5 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(h^{2}+h\right)+\left(4h+4\right)
\left(h^{2}+h\right)+\left(4h+4\right) ನ ಹಾಗೆ h^{2}+5h+4 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
h\left(h+1\right)+4\left(h+1\right)
ಮೊದಲನೆಯದರಲ್ಲಿ h ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(h+1\right)\left(h+4\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ h+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
h^{2}+5h+4=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
h=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
h=\frac{-5±\sqrt{25-4\times 4}}{2}
ವರ್ಗ 5.
h=\frac{-5±\sqrt{25-16}}{2}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
h=\frac{-5±\sqrt{9}}{2}
-16 ಗೆ 25 ಸೇರಿಸಿ.
h=\frac{-5±3}{2}
9 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
h=-\frac{2}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ h=\frac{-5±3}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ಗೆ -5 ಸೇರಿಸಿ.
h=-1
2 ದಿಂದ -2 ಭಾಗಿಸಿ.
h=-\frac{8}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ h=\frac{-5±3}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -5 ದಿಂದ 3 ಕಳೆಯಿರಿ.
h=-4
2 ದಿಂದ -8 ಭಾಗಿಸಿ.
h^{2}+5h+4=\left(h-\left(-1\right)\right)\left(h-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ -1 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -4 ನ್ನು ಬಳಸಿ.
h^{2}+5h+4=\left(h+1\right)\left(h+4\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.