f, n, W ಪರಿಹರಿಸಿ
f=15
n\in \mathrm{R}
W = \frac{15}{4} = 3\frac{3}{4} = 3.75
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
fn-\left(fn-f\right)=15
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. n-1 ದಿಂದ f ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
fn-fn+f=15
fn-f ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
f=15
0 ಪಡೆದುಕೊಳ್ಳಲು fn ಮತ್ತು -fn ಕೂಡಿಸಿ.
15\times 1=4W
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
15=4W
15 ಪಡೆದುಕೊಳ್ಳಲು 15 ಮತ್ತು 1 ಗುಣಿಸಿ.
4W=15
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
W=\frac{15}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
f=15 W=\frac{15}{4}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}