ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
f ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

f^{2}-3f=-5
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
f^{2}-3f-\left(-5\right)=-5-\left(-5\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.
f^{2}-3f-\left(-5\right)=0
-5 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
f^{2}-3f+5=0
0 ದಿಂದ -5 ಕಳೆಯಿರಿ.
f=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -3 ಮತ್ತು c ಗೆ 5 ಬದಲಿಸಿ.
f=\frac{-\left(-3\right)±\sqrt{9-4\times 5}}{2}
ವರ್ಗ -3.
f=\frac{-\left(-3\right)±\sqrt{9-20}}{2}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
f=\frac{-\left(-3\right)±\sqrt{-11}}{2}
-20 ಗೆ 9 ಸೇರಿಸಿ.
f=\frac{-\left(-3\right)±\sqrt{11}i}{2}
-11 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
f=\frac{3±\sqrt{11}i}{2}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
f=\frac{3+\sqrt{11}i}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ f=\frac{3±\sqrt{11}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. i\sqrt{11} ಗೆ 3 ಸೇರಿಸಿ.
f=\frac{-\sqrt{11}i+3}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ f=\frac{3±\sqrt{11}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ i\sqrt{11} ಕಳೆಯಿರಿ.
f=\frac{3+\sqrt{11}i}{2} f=\frac{-\sqrt{11}i+3}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
f^{2}-3f=-5
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
f^{2}-3f+\left(-\frac{3}{2}\right)^{2}=-5+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
f^{2}-3f+\frac{9}{4}=-5+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
f^{2}-3f+\frac{9}{4}=-\frac{11}{4}
\frac{9}{4} ಗೆ -5 ಸೇರಿಸಿ.
\left(f-\frac{3}{2}\right)^{2}=-\frac{11}{4}
ಅಪವರ್ತನ f^{2}-3f+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(f-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
f-\frac{3}{2}=\frac{\sqrt{11}i}{2} f-\frac{3}{2}=-\frac{\sqrt{11}i}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
f=\frac{3+\sqrt{11}i}{2} f=\frac{-\sqrt{11}i+3}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.