f ಪರಿಹರಿಸಿ
f=-\frac{x}{2\left(3-x\right)}
x\neq 0\text{ and }x\neq 3
x ಪರಿಹರಿಸಿ
x=-\frac{6f}{1-2f}
f\neq \frac{1}{2}\text{ and }f\neq 0
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{1}{f}x=2x-6
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
1x=2xf+f\left(-6\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ f ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. f ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2xf+f\left(-6\right)=1x
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
2fx-6f=x
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\left(2x-6\right)f=x
f ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(2x-6\right)f}{2x-6}=\frac{x}{2x-6}
2x-6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
f=\frac{x}{2x-6}
2x-6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2x-6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
f=\frac{x}{2\left(x-3\right)}
2x-6 ದಿಂದ x ಭಾಗಿಸಿ.
f=\frac{x}{2\left(x-3\right)}\text{, }f\neq 0
f ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
f^{-1}x-2x=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
-2x+\frac{1}{f}x=-6
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
-2xf+1x=-6f
f ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-2fx+x=-6f
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\left(-2f+1\right)x=-6f
x ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\left(1-2f\right)x=-6f
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(1-2f\right)x}{1-2f}=-\frac{6f}{1-2f}
1-2f ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{6f}{1-2f}
1-2f ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 1-2f ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}