x ಪರಿಹರಿಸಿ
x=\frac{\ln(120)}{4}\approx 1.196872936
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\frac{i\pi n_{1}}{2}+\frac{\ln(120)}{4}
n_{1}\in \mathrm{Z}
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
e^{4x}=120
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು ಘಾತಾಂಕಗಳು ಮತ್ತು ಕ್ರಮಾವಳಿಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
\log(e^{4x})=\log(120)
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ಕ್ರಮಾವಳಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
4x\log(e)=\log(120)
ಪವರ್ಗೆ ಹೆಚ್ಚಿಸಲಾದ ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯು ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯ ಪವರ್ ಸಮಯವಾಗಿರುತ್ತದೆ.
4x=\frac{\log(120)}{\log(e)}
\log(e) ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
4x=\log_{e}\left(120\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) ಮೂಲ ಸೂತ್ರ ಬದಲಾಯಿಸುವ ಮೂಲಕ.
x=\frac{\ln(120)}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}