c ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
c=\sqrt{15}-2\approx 1.872983346
c=-\left(\sqrt{15}+2\right)\approx -5.872983346
c ಪರಿಹರಿಸಿ
c=\sqrt{15}-2\approx 1.872983346
c=-\sqrt{15}-2\approx -5.872983346
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
c^{2}+4c-17=-6
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
c^{2}+4c-17-\left(-6\right)=-6-\left(-6\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 6 ಸೇರಿಸಿ.
c^{2}+4c-17-\left(-6\right)=0
-6 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
c^{2}+4c-11=0
-17 ದಿಂದ -6 ಕಳೆಯಿರಿ.
c=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 4 ಮತ್ತು c ಗೆ -11 ಬದಲಿಸಿ.
c=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
ವರ್ಗ 4.
c=\frac{-4±\sqrt{16+44}}{2}
-11 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{-4±\sqrt{60}}{2}
44 ಗೆ 16 ಸೇರಿಸಿ.
c=\frac{-4±2\sqrt{15}}{2}
60 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
c=\frac{2\sqrt{15}-4}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{-4±2\sqrt{15}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{15} ಗೆ -4 ಸೇರಿಸಿ.
c=\sqrt{15}-2
2 ದಿಂದ -4+2\sqrt{15} ಭಾಗಿಸಿ.
c=\frac{-2\sqrt{15}-4}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{-4±2\sqrt{15}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -4 ದಿಂದ 2\sqrt{15} ಕಳೆಯಿರಿ.
c=-\sqrt{15}-2
2 ದಿಂದ -4-2\sqrt{15} ಭಾಗಿಸಿ.
c=\sqrt{15}-2 c=-\sqrt{15}-2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
c^{2}+4c-17=-6
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
c^{2}+4c-17-\left(-17\right)=-6-\left(-17\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 17 ಸೇರಿಸಿ.
c^{2}+4c=-6-\left(-17\right)
-17 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
c^{2}+4c=11
-6 ದಿಂದ -17 ಕಳೆಯಿರಿ.
c^{2}+4c+2^{2}=11+2^{2}
2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
c^{2}+4c+4=11+4
ವರ್ಗ 2.
c^{2}+4c+4=15
4 ಗೆ 11 ಸೇರಿಸಿ.
\left(c+2\right)^{2}=15
ಅಪವರ್ತನ c^{2}+4c+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(c+2\right)^{2}}=\sqrt{15}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
c+2=\sqrt{15} c+2=-\sqrt{15}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
c=\sqrt{15}-2 c=-\sqrt{15}-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
c^{2}+4c-17=-6
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
c^{2}+4c-17-\left(-6\right)=-6-\left(-6\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 6 ಸೇರಿಸಿ.
c^{2}+4c-17-\left(-6\right)=0
-6 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
c^{2}+4c-11=0
-17 ದಿಂದ -6 ಕಳೆಯಿರಿ.
c=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 4 ಮತ್ತು c ಗೆ -11 ಬದಲಿಸಿ.
c=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
ವರ್ಗ 4.
c=\frac{-4±\sqrt{16+44}}{2}
-11 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{-4±\sqrt{60}}{2}
44 ಗೆ 16 ಸೇರಿಸಿ.
c=\frac{-4±2\sqrt{15}}{2}
60 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
c=\frac{2\sqrt{15}-4}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{-4±2\sqrt{15}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{15} ಗೆ -4 ಸೇರಿಸಿ.
c=\sqrt{15}-2
2 ದಿಂದ -4+2\sqrt{15} ಭಾಗಿಸಿ.
c=\frac{-2\sqrt{15}-4}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{-4±2\sqrt{15}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -4 ದಿಂದ 2\sqrt{15} ಕಳೆಯಿರಿ.
c=-\sqrt{15}-2
2 ದಿಂದ -4-2\sqrt{15} ಭಾಗಿಸಿ.
c=\sqrt{15}-2 c=-\sqrt{15}-2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
c^{2}+4c-17=-6
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
c^{2}+4c-17-\left(-17\right)=-6-\left(-17\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 17 ಸೇರಿಸಿ.
c^{2}+4c=-6-\left(-17\right)
-17 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
c^{2}+4c=11
-6 ದಿಂದ -17 ಕಳೆಯಿರಿ.
c^{2}+4c+2^{2}=11+2^{2}
2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
c^{2}+4c+4=11+4
ವರ್ಗ 2.
c^{2}+4c+4=15
4 ಗೆ 11 ಸೇರಿಸಿ.
\left(c+2\right)^{2}=15
ಅಪವರ್ತನ c^{2}+4c+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(c+2\right)^{2}}=\sqrt{15}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
c+2=\sqrt{15} c+2=-\sqrt{15}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
c=\sqrt{15}-2 c=-\sqrt{15}-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}