a ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right.
b ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
a ಪರಿಹರಿಸಿ
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right.
b ಪರಿಹರಿಸಿ
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
ax^{2}-a=b-bx
ಎರಡೂ ಕಡೆಗಳಿಂದ a ಕಳೆಯಿರಿ.
\left(x^{2}-1\right)a=b-bx
a ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
x^{2}-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=\frac{b-bx}{x^{2}-1}
x^{2}-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ x^{2}-1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
a=-\frac{b}{x+1}
x^{2}-1 ದಿಂದ b-bx ಭಾಗಿಸಿ.
a+b-bx=ax^{2}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
b-bx=ax^{2}-a
ಎರಡೂ ಕಡೆಗಳಿಂದ a ಕಳೆಯಿರಿ.
\left(1-x\right)b=ax^{2}-a
b ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
b=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 1-x ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
b=-a\left(x+1\right)
1-x ದಿಂದ a\left(x^{2}-1\right) ಭಾಗಿಸಿ.
ax^{2}-a=b-bx
ಎರಡೂ ಕಡೆಗಳಿಂದ a ಕಳೆಯಿರಿ.
\left(x^{2}-1\right)a=b-bx
a ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
x^{2}-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=\frac{b-bx}{x^{2}-1}
x^{2}-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ x^{2}-1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
a=-\frac{b}{x+1}
x^{2}-1 ದಿಂದ b-bx ಭಾಗಿಸಿ.
a+b-bx=ax^{2}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
b-bx=ax^{2}-a
ಎರಡೂ ಕಡೆಗಳಿಂದ a ಕಳೆಯಿರಿ.
\left(1-x\right)b=ax^{2}-a
b ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
b=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 1-x ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
b=-a\left(x+1\right)
1-x ದಿಂದ a\left(x^{2}-1\right) ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}