n ಪರಿಹರಿಸಿ
n=-\frac{2a_{n}-1}{a_{n}-2}
a_{n}\neq 2
a_n ಪರಿಹರಿಸಿ
a_{n}=\frac{2n+1}{n+2}
n\neq -2
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
a_{n}\left(n+2\right)=2n+1
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ n ವೇರಿಯೇಬಲ್ -2 ಗೆ ಸಮನಾಗಿರಬಾರದು. n+2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
a_{n}n+2a_{n}=2n+1
n+2 ದಿಂದ a_{n} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
a_{n}n+2a_{n}-2n=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2n ಕಳೆಯಿರಿ.
a_{n}n-2n=1-2a_{n}
ಎರಡೂ ಕಡೆಗಳಿಂದ 2a_{n} ಕಳೆಯಿರಿ.
\left(a_{n}-2\right)n=1-2a_{n}
n ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(a_{n}-2\right)n}{a_{n}-2}=\frac{1-2a_{n}}{a_{n}-2}
a_{n}-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n=\frac{1-2a_{n}}{a_{n}-2}
a_{n}-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ a_{n}-2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n=\frac{1-2a_{n}}{a_{n}-2}\text{, }n\neq -2
n ವೇರಿಯೇಬಲ್ -2 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}