ಅಪವರ್ತನ
\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(b^{4}+1\right)
ಮೌಲ್ಯಮಾಪನ
\left(a^{4}-1\right)\left(b^{4}+1\right)
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
a^{4}\left(b^{4}+1\right)-\left(b^{4}+1\right)
ಗುಂಪುಗೊಳಿಸುವಿಕೆ a^{4}-b^{4}+a^{4}b^{4}-1=\left(a^{4}b^{4}+a^{4}\right)+\left(-b^{4}-1\right) ಅನ್ನು ಮಾಡಿ ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ ಮೊದಲ ಮತ್ತು -1 ನಲ್ಲಿ a^{4} ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(b^{4}+1\right)\left(a^{4}-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ b^{4}+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(a^{2}-1\right)\left(a^{2}+1\right)
a^{4}-1 ಪರಿಗಣಿಸಿ. \left(a^{2}\right)^{2}-1^{2} ನ ಹಾಗೆ a^{4}-1 ಅನ್ನು ಮರುಬರೆಯಿರಿ. ಚೌಕಗಳ ವ್ಯತ್ಯಾಸವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)
a^{2}-1 ಪರಿಗಣಿಸಿ. a^{2}-1^{2} ನ ಹಾಗೆ a^{2}-1 ಅನ್ನು ಮರುಬರೆಯಿರಿ. ಚೌಕಗಳ ವ್ಯತ್ಯಾಸವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(b^{4}+1\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ. ಮುಂದಿನ ಬಹುಪದೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಲಾಗಿಲ್ಲ ಏಕೆಂದರೆ ಅವುಗಳು ಯಾವುದೇ ತರ್ಕಬದ್ಧ ವರ್ಗಮೂಲಗಳನ್ನು ಹೊಂದಿಲ್ಲ: a^{2}+1,b^{4}+1.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}