ಅಪವರ್ತನ
\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x^{2}+xy+y^{2}\right)
ಮೌಲ್ಯಮಾಪನ
\left(a^{2}-b^{2}\right)\left(x^{3}-y^{3}\right)
ರಸಪ್ರಶ್ನೆ
Algebra
a ^ { 2 } x ^ { 3 } - x ^ { 3 } b ^ { 2 } - a ^ { 2 } y ^ { 3 } + y ^ { 3 } b ^ { 2 } =
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{3}\left(a^{2}-b^{2}\right)-y^{3}\left(a^{2}-b^{2}\right)
ಗುಂಪುಗೊಳಿಸುವಿಕೆ a^{2}x^{3}-x^{3}b^{2}-a^{2}y^{3}+y^{3}b^{2}=\left(a^{2}x^{3}-x^{3}b^{2}\right)+\left(-a^{2}y^{3}+y^{3}b^{2}\right) ಅನ್ನು ಮಾಡಿ ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ ಮೊದಲ ಮತ್ತು -y^{3} ನಲ್ಲಿ x^{3} ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(a^{2}-b^{2}\right)\left(x^{3}-y^{3}\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ a^{2}-b^{2} ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(a-b\right)\left(a+b\right)
a^{2}-b^{2} ಪರಿಗಣಿಸಿ. ಚೌಕಗಳ ವ್ಯತ್ಯಾಸವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
x^{3}-y^{3} ಪರಿಗಣಿಸಿ. ಘನಗಳ ವ್ಯತ್ಯಾಸವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a-b\right)\left(a+b\right)\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}