ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
a ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a^{2}+8a+9=96
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
a^{2}+8a+9-96=96-96
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 96 ಕಳೆಯಿರಿ.
a^{2}+8a+9-96=0
96 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
a^{2}+8a-87=0
9 ದಿಂದ 96 ಕಳೆಯಿರಿ.
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 8 ಮತ್ತು c ಗೆ -87 ಬದಲಿಸಿ.
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
ವರ್ಗ 8.
a=\frac{-8±\sqrt{64+348}}{2}
-87 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-8±\sqrt{412}}{2}
348 ಗೆ 64 ಸೇರಿಸಿ.
a=\frac{-8±2\sqrt{103}}{2}
412 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=\frac{2\sqrt{103}-8}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-8±2\sqrt{103}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{103} ಗೆ -8 ಸೇರಿಸಿ.
a=\sqrt{103}-4
2 ದಿಂದ -8+2\sqrt{103} ಭಾಗಿಸಿ.
a=\frac{-2\sqrt{103}-8}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-8±2\sqrt{103}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -8 ದಿಂದ 2\sqrt{103} ಕಳೆಯಿರಿ.
a=-\sqrt{103}-4
2 ದಿಂದ -8-2\sqrt{103} ಭಾಗಿಸಿ.
a=\sqrt{103}-4 a=-\sqrt{103}-4
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
a^{2}+8a+9=96
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
a^{2}+8a+9-9=96-9
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 9 ಕಳೆಯಿರಿ.
a^{2}+8a=96-9
9 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
a^{2}+8a=87
96 ದಿಂದ 9 ಕಳೆಯಿರಿ.
a^{2}+8a+4^{2}=87+4^{2}
4 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 8 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 4 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
a^{2}+8a+16=87+16
ವರ್ಗ 4.
a^{2}+8a+16=103
16 ಗೆ 87 ಸೇರಿಸಿ.
\left(a+4\right)^{2}=103
ಅಪವರ್ತನ a^{2}+8a+16. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a+4=\sqrt{103} a+4=-\sqrt{103}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
a=\sqrt{103}-4 a=-\sqrt{103}-4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.