ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

p+q=10 pq=1\times 24=24
ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು a^{2}+pa+qa+24 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. p ಮತ್ತು q ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,24 2,12 3,8 4,6
pq ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, p ಮತ್ತು q ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. p+q ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, p ಮತ್ತು q ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 24 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+24=25 2+12=14 3+8=11 4+6=10
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
p=4 q=6
ಪರಿಹಾರವು 10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(a^{2}+4a\right)+\left(6a+24\right)
\left(a^{2}+4a\right)+\left(6a+24\right) ನ ಹಾಗೆ a^{2}+10a+24 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
a\left(a+4\right)+6\left(a+4\right)
ಮೊದಲನೆಯದರಲ್ಲಿ a ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 6 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(a+4\right)\left(a+6\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ a+4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
a^{2}+10a+24=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
a=\frac{-10±\sqrt{10^{2}-4\times 24}}{2}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
a=\frac{-10±\sqrt{100-4\times 24}}{2}
ವರ್ಗ 10.
a=\frac{-10±\sqrt{100-96}}{2}
24 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-10±\sqrt{4}}{2}
-96 ಗೆ 100 ಸೇರಿಸಿ.
a=\frac{-10±2}{2}
4 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=-\frac{8}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-10±2}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ಗೆ -10 ಸೇರಿಸಿ.
a=-4
2 ದಿಂದ -8 ಭಾಗಿಸಿ.
a=-\frac{12}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-10±2}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 2 ಕಳೆಯಿರಿ.
a=-6
2 ದಿಂದ -12 ಭಾಗಿಸಿ.
a^{2}+10a+24=\left(a-\left(-4\right)\right)\left(a-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ -4 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -6 ನ್ನು ಬಳಸಿ.
a^{2}+10a+24=\left(a+4\right)\left(a+6\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.