a ಪರಿಹರಿಸಿ
a=\frac{\sqrt{111}-6}{5}\approx 0.907130751
a=\frac{-\sqrt{111}-6}{5}\approx -3.307130751
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
5a^{2}+12a=15
5 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
5a^{2}+12a-15=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 15 ಕಳೆಯಿರಿ.
a=\frac{-12±\sqrt{12^{2}-4\times 5\left(-15\right)}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ 12 ಮತ್ತು c ಗೆ -15 ಬದಲಿಸಿ.
a=\frac{-12±\sqrt{144-4\times 5\left(-15\right)}}{2\times 5}
ವರ್ಗ 12.
a=\frac{-12±\sqrt{144-20\left(-15\right)}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-12±\sqrt{144+300}}{2\times 5}
-15 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-12±\sqrt{444}}{2\times 5}
300 ಗೆ 144 ಸೇರಿಸಿ.
a=\frac{-12±2\sqrt{111}}{2\times 5}
444 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=\frac{-12±2\sqrt{111}}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{2\sqrt{111}-12}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-12±2\sqrt{111}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{111} ಗೆ -12 ಸೇರಿಸಿ.
a=\frac{\sqrt{111}-6}{5}
10 ದಿಂದ -12+2\sqrt{111} ಭಾಗಿಸಿ.
a=\frac{-2\sqrt{111}-12}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-12±2\sqrt{111}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -12 ದಿಂದ 2\sqrt{111} ಕಳೆಯಿರಿ.
a=\frac{-\sqrt{111}-6}{5}
10 ದಿಂದ -12-2\sqrt{111} ಭಾಗಿಸಿ.
a=\frac{\sqrt{111}-6}{5} a=\frac{-\sqrt{111}-6}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5a^{2}+12a=15
5 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\frac{5a^{2}+12a}{5}=\frac{15}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a^{2}+\frac{12}{5}a=\frac{15}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
a^{2}+\frac{12}{5}a=3
5 ದಿಂದ 15 ಭಾಗಿಸಿ.
a^{2}+\frac{12}{5}a+\left(\frac{6}{5}\right)^{2}=3+\left(\frac{6}{5}\right)^{2}
\frac{6}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{12}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{6}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
a^{2}+\frac{12}{5}a+\frac{36}{25}=3+\frac{36}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{5} ವರ್ಗಗೊಳಿಸಿ.
a^{2}+\frac{12}{5}a+\frac{36}{25}=\frac{111}{25}
\frac{36}{25} ಗೆ 3 ಸೇರಿಸಿ.
\left(a+\frac{6}{5}\right)^{2}=\frac{111}{25}
ಅಪವರ್ತನ a^{2}+\frac{12}{5}a+\frac{36}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(a+\frac{6}{5}\right)^{2}}=\sqrt{\frac{111}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a+\frac{6}{5}=\frac{\sqrt{111}}{5} a+\frac{6}{5}=-\frac{\sqrt{111}}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
a=\frac{\sqrt{111}-6}{5} a=\frac{-\sqrt{111}-6}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{6}{5} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}