E ಪರಿಹರಿಸಿ
\left\{\begin{matrix}E=\frac{-F+H-20k-2}{10k}\text{, }&k\neq 0\\E\in \mathrm{R}\text{, }&F=H-2\text{ and }k=0\end{matrix}\right.
F ಪರಿಹರಿಸಿ
F=-10Ek+H-20k-2
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
H-10k\left(E+2\right)=F+2
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
H-10kE-20k=F+2
E+2 ದಿಂದ -10k ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-10kE-20k=F+2-H
ಎರಡೂ ಕಡೆಗಳಿಂದ H ಕಳೆಯಿರಿ.
-10kE=F+2-H+20k
ಎರಡೂ ಬದಿಗಳಿಗೆ 20k ಸೇರಿಸಿ.
\left(-10k\right)E=F-H+20k+2
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(-10k\right)E}{-10k}=\frac{F-H+20k+2}{-10k}
-10k ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
E=\frac{F-H+20k+2}{-10k}
-10k ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -10k ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
E=-\frac{F-H+20k+2}{10k}
-10k ದಿಂದ F-H+2+20k ಭಾಗಿಸಿ.
F=H-10k\left(E+2\right)-2
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
F=H-10kE-20k-2
E+2 ದಿಂದ -10k ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}