c ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}c=\left(\frac{|E|}{|m|}\right)^{\frac{Re(t)Re(y^{2})-Im(t)Im(y^{2})-iRe(t)Im(y^{2})-iIm(t)Re(y^{2})}{\left(\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}\right)\left(\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}\right)^{2}}}e^{\frac{2\pi n_{1}iIm(t)Im(y^{2})}{\left(\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}\right)\left(\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}\right)^{2}}-\frac{2\pi n_{1}iRe(t)Re(y^{2})}{\left(\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}\right)\left(\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}\right)^{2}}-\frac{2\pi n_{1}Re(t)Im(y^{2})}{\left(\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}\right)\left(\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}\right)^{2}}-\frac{2\pi n_{1}Im(t)Re(y^{2})}{\left(\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}\right)\left(\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}\right)^{2}}+\frac{arg(\frac{E}{m})Re(t)Im(y^{2})+arg(\frac{E}{m})Im(t)Re(y^{2})+iarg(\frac{E}{m})Re(t)Re(y^{2})-iarg(\frac{E}{m})Im(t)Im(y^{2})}{\left(\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}\right)\left(\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}\right)^{2}}}\text{, }n_{1}\in \mathrm{Z}\text{, }&m\neq 0\\c\in \mathrm{C}\text{, }&E=0\text{ and }m=0\end{matrix}\right.
E ಪರಿಹರಿಸಿ
E=mc^{ty^{2}}
c>0\text{ or }\left(c=0\text{ and }t>0\text{ and }y\neq 0\right)\text{ or }\left(c<0\text{ and }Denominator(ty^{2})\text{bmod}2=1\right)
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}