x ಪರಿಹರಿಸಿ
x=\frac{\sqrt{835}-10}{49}\approx 0.385640134
x=\frac{-\sqrt{835}-10}{49}\approx -0.793803399
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
98x^{2}+40x-30=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-40±\sqrt{40^{2}-4\times 98\left(-30\right)}}{2\times 98}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 98, b ಗೆ 40 ಮತ್ತು c ಗೆ -30 ಬದಲಿಸಿ.
x=\frac{-40±\sqrt{1600-4\times 98\left(-30\right)}}{2\times 98}
ವರ್ಗ 40.
x=\frac{-40±\sqrt{1600-392\left(-30\right)}}{2\times 98}
98 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-40±\sqrt{1600+11760}}{2\times 98}
-30 ಅನ್ನು -392 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-40±\sqrt{13360}}{2\times 98}
11760 ಗೆ 1600 ಸೇರಿಸಿ.
x=\frac{-40±4\sqrt{835}}{2\times 98}
13360 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-40±4\sqrt{835}}{196}
98 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4\sqrt{835}-40}{196}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-40±4\sqrt{835}}{196} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{835} ಗೆ -40 ಸೇರಿಸಿ.
x=\frac{\sqrt{835}-10}{49}
196 ದಿಂದ -40+4\sqrt{835} ಭಾಗಿಸಿ.
x=\frac{-4\sqrt{835}-40}{196}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-40±4\sqrt{835}}{196} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -40 ದಿಂದ 4\sqrt{835} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{835}-10}{49}
196 ದಿಂದ -40-4\sqrt{835} ಭಾಗಿಸಿ.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
98x^{2}+40x-30=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
98x^{2}+40x-30-\left(-30\right)=-\left(-30\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 30 ಸೇರಿಸಿ.
98x^{2}+40x=-\left(-30\right)
-30 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
98x^{2}+40x=30
0 ದಿಂದ -30 ಕಳೆಯಿರಿ.
\frac{98x^{2}+40x}{98}=\frac{30}{98}
98 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{40}{98}x=\frac{30}{98}
98 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 98 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{20}{49}x=\frac{30}{98}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{40}{98} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{20}{49}x=\frac{15}{49}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{30}{98} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{20}{49}x+\left(\frac{10}{49}\right)^{2}=\frac{15}{49}+\left(\frac{10}{49}\right)^{2}
\frac{10}{49} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{20}{49} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{10}{49} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{15}{49}+\frac{100}{2401}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{10}{49} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{835}{2401}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{100}{2401} ಗೆ \frac{15}{49} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{10}{49}\right)^{2}=\frac{835}{2401}
ಅಪವರ್ತನ x^{2}+\frac{20}{49}x+\frac{100}{2401}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{10}{49}\right)^{2}}=\sqrt{\frac{835}{2401}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{10}{49}=\frac{\sqrt{835}}{49} x+\frac{10}{49}=-\frac{\sqrt{835}}{49}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{10}{49} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}