ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=-104 ab=9\left(-48\right)=-432
ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 9y^{2}+ay+by-48 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-432 2,-216 3,-144 4,-108 6,-72 8,-54 9,-48 12,-36 16,-27 18,-24
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -432 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-432=-431 2-216=-214 3-144=-141 4-108=-104 6-72=-66 8-54=-46 9-48=-39 12-36=-24 16-27=-11 18-24=-6
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-108 b=4
ಪರಿಹಾರವು -104 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(9y^{2}-108y\right)+\left(4y-48\right)
\left(9y^{2}-108y\right)+\left(4y-48\right) ನ ಹಾಗೆ 9y^{2}-104y-48 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
9y\left(y-12\right)+4\left(y-12\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 9y ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(y-12\right)\left(9y+4\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ y-12 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
9y^{2}-104y-48=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
y=\frac{-\left(-104\right)±\sqrt{\left(-104\right)^{2}-4\times 9\left(-48\right)}}{2\times 9}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
y=\frac{-\left(-104\right)±\sqrt{10816-4\times 9\left(-48\right)}}{2\times 9}
ವರ್ಗ -104.
y=\frac{-\left(-104\right)±\sqrt{10816-36\left(-48\right)}}{2\times 9}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-\left(-104\right)±\sqrt{10816+1728}}{2\times 9}
-48 ಅನ್ನು -36 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-\left(-104\right)±\sqrt{12544}}{2\times 9}
1728 ಗೆ 10816 ಸೇರಿಸಿ.
y=\frac{-\left(-104\right)±112}{2\times 9}
12544 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{104±112}{2\times 9}
-104 ನ ವಿಲೋಮವು 104 ಆಗಿದೆ.
y=\frac{104±112}{18}
9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{216}{18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{104±112}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 112 ಗೆ 104 ಸೇರಿಸಿ.
y=12
18 ದಿಂದ 216 ಭಾಗಿಸಿ.
y=-\frac{8}{18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{104±112}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 104 ದಿಂದ 112 ಕಳೆಯಿರಿ.
y=-\frac{4}{9}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-8}{18} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
9y^{2}-104y-48=9\left(y-12\right)\left(y-\left(-\frac{4}{9}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 12 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -\frac{4}{9} ನ್ನು ಬಳಸಿ.
9y^{2}-104y-48=9\left(y-12\right)\left(y+\frac{4}{9}\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.
9y^{2}-104y-48=9\left(y-12\right)\times \frac{9y+4}{9}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ y ಗೆ \frac{4}{9} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
9y^{2}-104y-48=\left(y-12\right)\left(9y+4\right)
9 ಮತ್ತು 9 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 9 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.