ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌
ರಸಪ್ರಶ್ನೆ
Polynomial

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3\left(3y^{2}+25y-18\right)
3 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=25 ab=3\left(-18\right)=-54
3y^{2}+25y-18 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 3y^{2}+ay+by-18 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,54 -2,27 -3,18 -6,9
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -54 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+54=53 -2+27=25 -3+18=15 -6+9=3
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-2 b=27
ಪರಿಹಾರವು 25 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(3y^{2}-2y\right)+\left(27y-18\right)
\left(3y^{2}-2y\right)+\left(27y-18\right) ನ ಹಾಗೆ 3y^{2}+25y-18 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
y\left(3y-2\right)+9\left(3y-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ y ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 9 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3y-2\right)\left(y+9\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3y-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
3\left(3y-2\right)\left(y+9\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
9y^{2}+75y-54=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
y=\frac{-75±\sqrt{75^{2}-4\times 9\left(-54\right)}}{2\times 9}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
y=\frac{-75±\sqrt{5625-4\times 9\left(-54\right)}}{2\times 9}
ವರ್ಗ 75.
y=\frac{-75±\sqrt{5625-36\left(-54\right)}}{2\times 9}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-75±\sqrt{5625+1944}}{2\times 9}
-54 ಅನ್ನು -36 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-75±\sqrt{7569}}{2\times 9}
1944 ಗೆ 5625 ಸೇರಿಸಿ.
y=\frac{-75±87}{2\times 9}
7569 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{-75±87}{18}
9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{12}{18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-75±87}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 87 ಗೆ -75 ಸೇರಿಸಿ.
y=\frac{2}{3}
6 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{12}{18} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
y=-\frac{162}{18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-75±87}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -75 ದಿಂದ 87 ಕಳೆಯಿರಿ.
y=-9
18 ದಿಂದ -162 ಭಾಗಿಸಿ.
9y^{2}+75y-54=9\left(y-\frac{2}{3}\right)\left(y-\left(-9\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{2}{3} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -9 ನ್ನು ಬಳಸಿ.
9y^{2}+75y-54=9\left(y-\frac{2}{3}\right)\left(y+9\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.
9y^{2}+75y-54=9\times \frac{3y-2}{3}\left(y+9\right)
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ y ದಿಂದ \frac{2}{3} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
9y^{2}+75y-54=3\left(3y-2\right)\left(y+9\right)
9 ಮತ್ತು 3 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 3 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.