ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

9x^{2}-2-18x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 18x ಕಳೆಯಿರಿ.
9x^{2}-18x-2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 9, b ಗೆ -18 ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9\left(-2\right)}}{2\times 9}
ವರ್ಗ -18.
x=\frac{-\left(-18\right)±\sqrt{324-36\left(-2\right)}}{2\times 9}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{324+72}}{2\times 9}
-2 ಅನ್ನು -36 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{396}}{2\times 9}
72 ಗೆ 324 ಸೇರಿಸಿ.
x=\frac{-\left(-18\right)±6\sqrt{11}}{2\times 9}
396 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{18±6\sqrt{11}}{2\times 9}
-18 ನ ವಿಲೋಮವು 18 ಆಗಿದೆ.
x=\frac{18±6\sqrt{11}}{18}
9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6\sqrt{11}+18}{18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{18±6\sqrt{11}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6\sqrt{11} ಗೆ 18 ಸೇರಿಸಿ.
x=\frac{\sqrt{11}}{3}+1
18 ದಿಂದ 18+6\sqrt{11} ಭಾಗಿಸಿ.
x=\frac{18-6\sqrt{11}}{18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{18±6\sqrt{11}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 18 ದಿಂದ 6\sqrt{11} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{11}}{3}+1
18 ದಿಂದ 18-6\sqrt{11} ಭಾಗಿಸಿ.
x=\frac{\sqrt{11}}{3}+1 x=-\frac{\sqrt{11}}{3}+1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
9x^{2}-2-18x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 18x ಕಳೆಯಿರಿ.
9x^{2}-18x=2
ಎರಡೂ ಬದಿಗಳಿಗೆ 2 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{9x^{2}-18x}{9}=\frac{2}{9}
9 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{18}{9}\right)x=\frac{2}{9}
9 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 9 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-2x=\frac{2}{9}
9 ದಿಂದ -18 ಭಾಗಿಸಿ.
x^{2}-2x+1=\frac{2}{9}+1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-2x+1=\frac{11}{9}
1 ಗೆ \frac{2}{9} ಸೇರಿಸಿ.
\left(x-1\right)^{2}=\frac{11}{9}
ಅಪವರ್ತನ x^{2}-2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ವರ್ಗವಾದಾಗ, ಇದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{11}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-1=\frac{\sqrt{11}}{3} x-1=-\frac{\sqrt{11}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{11}}{3}+1 x=-\frac{\sqrt{11}}{3}+1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.