ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

9x^{2}+x-97=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-1±\sqrt{1^{2}-4\times 9\left(-97\right)}}{2\times 9}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-1±\sqrt{1-4\times 9\left(-97\right)}}{2\times 9}
ವರ್ಗ 1.
x=\frac{-1±\sqrt{1-36\left(-97\right)}}{2\times 9}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1±\sqrt{1+3492}}{2\times 9}
-97 ಅನ್ನು -36 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1±\sqrt{3493}}{2\times 9}
3492 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-1±\sqrt{3493}}{18}
9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{3493}-1}{18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±\sqrt{3493}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{3493} ಗೆ -1 ಸೇರಿಸಿ.
x=\frac{-\sqrt{3493}-1}{18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±\sqrt{3493}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1 ದಿಂದ \sqrt{3493} ಕಳೆಯಿರಿ.
9x^{2}+x-97=9\left(x-\frac{\sqrt{3493}-1}{18}\right)\left(x-\frac{-\sqrt{3493}-1}{18}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{-1+\sqrt{3493}}{18} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{-1-\sqrt{3493}}{18} ನ್ನು ಬಳಸಿ.