ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌
ರಸಪ್ರಶ್ನೆ
Polynomial

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=-30 ab=9\times 25=225
ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 9x^{2}+ax+bx+25 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 225 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-15 b=-15
ಪರಿಹಾರವು -30 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
\left(9x^{2}-15x\right)+\left(-15x+25\right) ನ ಹಾಗೆ 9x^{2}-30x+25 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
3x\left(3x-5\right)-5\left(3x-5\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 3x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3x-5\right)\left(3x-5\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3x-5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3x-5\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
factor(9x^{2}-30x+25)
ಈ ತ್ರಿಪದೋಕ್ತಿಯು ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗ, ಸಾಮಾನ್ಯ ಅಂಶದ ಮೂಲಕ ಬಹುಶಃ ಗುಣಿಸಿಲಾದ ಫಾರ್ಮ್‌ ಹೊಂದಿದೆ. ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗಗಳು ಮುಂಚಿನ ಮತ್ತು ಹಿಂದಿನ ಪದಗಳ ವರ್ಗ ಮೂಲಗಳನ್ನು ಹುಡುಕುವ ಮೂಲಕ ಅಪವರ್ತನಗಳಾಗಬಹುದು.
gcf(9,-30,25)=1
ಗುಣಾಂಕಗಳ ಅತೀ ಸಾಮಾನ್ಯ ಅಪವರ್ತನ ಹುಡುಕಿ.
\sqrt{9x^{2}}=3x
ಪ್ರಧಾಮ ಪದ 9x^{2}, ವರ್ಗಮೂಲವನ್ನು ಹುಡುಕಿ.
\sqrt{25}=5
ಹಿಂದಿರುವ ಪದ 25, ವರ್ಗಮೂಲವನ್ನು ಹುಡುಕಿ.
\left(3x-5\right)^{2}
ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗವು ದ್ವಿಪದೋಕ್ತಿಯ ವರ್ಗವಾಗಿದ್ದು, ಇದು ಮುಂದಿನ ಮತ್ತು ಹಿಂದಿನ ಪದಗಳ ವರ್ಗ ಮೂಲಗಳ ಮೊತ್ತ ಅಥವಾ ವ್ಯತ್ಯಾಸವಾಗಿರುತ್ತದೆ, ಜೊತೆಗೆ ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗದ ಮಧ್ಯಮ ಪದದ ಚಿಹ್ನೆಯ ಮೂಲಕ ಚಿಹ್ನೆಯನ್ನು ನಿರ್ಧರಿಸುತ್ತದೆ.
9x^{2}-30x+25=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
ವರ್ಗ -30.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
25 ಅನ್ನು -36 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
-900 ಗೆ 900 ಸೇರಿಸಿ.
x=\frac{-\left(-30\right)±0}{2\times 9}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{30±0}{2\times 9}
-30 ನ ವಿಲೋಮವು 30 ಆಗಿದೆ.
x=\frac{30±0}{18}
9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
9x^{2}-30x+25=9\left(x-\frac{5}{3}\right)\left(x-\frac{5}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{5}{3} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{5}{3} ನ್ನು ಬಳಸಿ.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\left(x-\frac{5}{3}\right)
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ x ದಿಂದ \frac{5}{3} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\times \frac{3x-5}{3}
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ x ದಿಂದ \frac{5}{3} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{3\times 3}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{3x-5}{3} ಅನ್ನು \frac{3x-5}{3} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{9}
3 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
9x^{2}-30x+25=\left(3x-5\right)\left(3x-5\right)
9 ಮತ್ತು 9 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 9 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.