n ಪರಿಹರಿಸಿ
n=\frac{1+\sqrt{215}i}{54}\approx 0.018518519+0.271534783i
n=\frac{-\sqrt{215}i+1}{54}\approx 0.018518519-0.271534783i
ರಸಪ್ರಶ್ನೆ
Complex Number
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
9 = \frac{ n-4 }{ 3 { n }^{ 2 } } + \frac{ 2 }{ 3 { n }^{ 2 } }
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
27n^{2}=n-4+2
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ n ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. 3n^{2} ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
27n^{2}=n-2
-2 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 2 ಸೇರಿಸಿ.
27n^{2}-n=-2
ಎರಡೂ ಕಡೆಗಳಿಂದ n ಕಳೆಯಿರಿ.
27n^{2}-n+2=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2 ಸೇರಿಸಿ.
n=\frac{-\left(-1\right)±\sqrt{1-4\times 27\times 2}}{2\times 27}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 27, b ಗೆ -1 ಮತ್ತು c ಗೆ 2 ಬದಲಿಸಿ.
n=\frac{-\left(-1\right)±\sqrt{1-108\times 2}}{2\times 27}
27 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-1\right)±\sqrt{1-216}}{2\times 27}
2 ಅನ್ನು -108 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-1\right)±\sqrt{-215}}{2\times 27}
-216 ಗೆ 1 ಸೇರಿಸಿ.
n=\frac{-\left(-1\right)±\sqrt{215}i}{2\times 27}
-215 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{1±\sqrt{215}i}{2\times 27}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
n=\frac{1±\sqrt{215}i}{54}
27 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{1+\sqrt{215}i}{54}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{1±\sqrt{215}i}{54} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. i\sqrt{215} ಗೆ 1 ಸೇರಿಸಿ.
n=\frac{-\sqrt{215}i+1}{54}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{1±\sqrt{215}i}{54} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ i\sqrt{215} ಕಳೆಯಿರಿ.
n=\frac{1+\sqrt{215}i}{54} n=\frac{-\sqrt{215}i+1}{54}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
27n^{2}=n-4+2
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ n ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. 3n^{2} ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
27n^{2}=n-2
-2 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 2 ಸೇರಿಸಿ.
27n^{2}-n=-2
ಎರಡೂ ಕಡೆಗಳಿಂದ n ಕಳೆಯಿರಿ.
\frac{27n^{2}-n}{27}=-\frac{2}{27}
27 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n^{2}-\frac{1}{27}n=-\frac{2}{27}
27 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 27 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n^{2}-\frac{1}{27}n+\left(-\frac{1}{54}\right)^{2}=-\frac{2}{27}+\left(-\frac{1}{54}\right)^{2}
-\frac{1}{54} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1}{27} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{54} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}-\frac{1}{27}n+\frac{1}{2916}=-\frac{2}{27}+\frac{1}{2916}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{54} ವರ್ಗಗೊಳಿಸಿ.
n^{2}-\frac{1}{27}n+\frac{1}{2916}=-\frac{215}{2916}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{2916} ಗೆ -\frac{2}{27} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(n-\frac{1}{54}\right)^{2}=-\frac{215}{2916}
ಅಪವರ್ತನ n^{2}-\frac{1}{27}n+\frac{1}{2916}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-\frac{1}{54}\right)^{2}}=\sqrt{-\frac{215}{2916}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-\frac{1}{54}=\frac{\sqrt{215}i}{54} n-\frac{1}{54}=-\frac{\sqrt{215}i}{54}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=\frac{1+\sqrt{215}i}{54} n=\frac{-\sqrt{215}i+1}{54}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{54} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}