x ಪರಿಹರಿಸಿ
x = \frac{2 \sqrt{7} - 2}{3} \approx 1.097167541
x=\frac{-2\sqrt{7}-2}{3}\approx -2.430500874
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
9+x^{2}=4x^{2}+4x+1
\left(2x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
9+x^{2}-4x^{2}=4x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
9-3x^{2}=4x+1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
9-3x^{2}-4x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
9-3x^{2}-4x-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
8-3x^{2}-4x=0
8 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 1 ಕಳೆಯಿರಿ.
-3x^{2}-4x+8=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -4 ಮತ್ತು c ಗೆ 8 ಬದಲಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\times 8}}{2\left(-3\right)}
ವರ್ಗ -4.
x=\frac{-\left(-4\right)±\sqrt{16+12\times 8}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{16+96}}{2\left(-3\right)}
8 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{112}}{2\left(-3\right)}
96 ಗೆ 16 ಸೇರಿಸಿ.
x=\frac{-\left(-4\right)±4\sqrt{7}}{2\left(-3\right)}
112 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{4±4\sqrt{7}}{2\left(-3\right)}
-4 ನ ವಿಲೋಮವು 4 ಆಗಿದೆ.
x=\frac{4±4\sqrt{7}}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4\sqrt{7}+4}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{4±4\sqrt{7}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{7} ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-2\sqrt{7}-2}{3}
-6 ದಿಂದ 4+4\sqrt{7} ಭಾಗಿಸಿ.
x=\frac{4-4\sqrt{7}}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{4±4\sqrt{7}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ದಿಂದ 4\sqrt{7} ಕಳೆಯಿರಿ.
x=\frac{2\sqrt{7}-2}{3}
-6 ದಿಂದ 4-4\sqrt{7} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{7}-2}{3} x=\frac{2\sqrt{7}-2}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
9+x^{2}=4x^{2}+4x+1
\left(2x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
9+x^{2}-4x^{2}=4x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
9-3x^{2}=4x+1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
9-3x^{2}-4x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
-3x^{2}-4x=1-9
ಎರಡೂ ಕಡೆಗಳಿಂದ 9 ಕಳೆಯಿರಿ.
-3x^{2}-4x=-8
-8 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 9 ಕಳೆಯಿರಿ.
\frac{-3x^{2}-4x}{-3}=-\frac{8}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{4}{-3}\right)x=-\frac{8}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{4}{3}x=-\frac{8}{-3}
-3 ದಿಂದ -4 ಭಾಗಿಸಿ.
x^{2}+\frac{4}{3}x=\frac{8}{3}
-3 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{8}{3}+\left(\frac{2}{3}\right)^{2}
\frac{2}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{4}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{2}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{8}{3}+\frac{4}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{28}{9}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{4}{9} ಗೆ \frac{8}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{2}{3}\right)^{2}=\frac{28}{9}
ಅಪವರ್ತನ x^{2}+\frac{4}{3}x+\frac{4}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{28}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{2}{3}=\frac{2\sqrt{7}}{3} x+\frac{2}{3}=-\frac{2\sqrt{7}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2\sqrt{7}-2}{3} x=\frac{-2\sqrt{7}-2}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{2}{3} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}