ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

8x^{2}-8x=0
x-1 ದಿಂದ 8x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x\left(8x-8\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=1
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು 8x-8=0 ಪರಿಹರಿಸಿ.
8x^{2}-8x=0
x-1 ದಿಂದ 8x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 8}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 8, b ಗೆ -8 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-\left(-8\right)±8}{2\times 8}
\left(-8\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{8±8}{2\times 8}
-8 ನ ವಿಲೋಮವು 8 ಆಗಿದೆ.
x=\frac{8±8}{16}
8 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{16}{16}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±8}{16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ಗೆ 8 ಸೇರಿಸಿ.
x=1
16 ದಿಂದ 16 ಭಾಗಿಸಿ.
x=\frac{0}{16}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±8}{16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ದಿಂದ 8 ಕಳೆಯಿರಿ.
x=0
16 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=1 x=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
8x^{2}-8x=0
x-1 ದಿಂದ 8x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{8x^{2}-8x}{8}=\frac{0}{8}
8 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{8}{8}\right)x=\frac{0}{8}
8 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 8 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-x=\frac{0}{8}
8 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}-x=0
8 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -1 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
ಅಪವರ್ತನ x^{2}-x+\frac{1}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=1 x=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{2} ಸೇರಿಸಿ.