ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌
ರಸಪ್ರಶ್ನೆ
Polynomial

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4\left(2x^{2}-13x+6\right)
4 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=-13 ab=2\times 6=12
2x^{2}-13x+6 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 2x^{2}+ax+bx+6 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-12 -2,-6 -3,-4
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 12 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-12=-13 -2-6=-8 -3-4=-7
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-12 b=-1
ಪರಿಹಾರವು -13 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(2x^{2}-12x\right)+\left(-x+6\right)
\left(2x^{2}-12x\right)+\left(-x+6\right) ನ ಹಾಗೆ 2x^{2}-13x+6 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
2x\left(x-6\right)-\left(x-6\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 2x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-6\right)\left(2x-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-6 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
4\left(x-6\right)\left(2x-1\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
8x^{2}-52x+24=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 8\times 24}}{2\times 8}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 8\times 24}}{2\times 8}
ವರ್ಗ -52.
x=\frac{-\left(-52\right)±\sqrt{2704-32\times 24}}{2\times 8}
8 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-52\right)±\sqrt{2704-768}}{2\times 8}
24 ಅನ್ನು -32 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-52\right)±\sqrt{1936}}{2\times 8}
-768 ಗೆ 2704 ಸೇರಿಸಿ.
x=\frac{-\left(-52\right)±44}{2\times 8}
1936 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{52±44}{2\times 8}
-52 ನ ವಿಲೋಮವು 52 ಆಗಿದೆ.
x=\frac{52±44}{16}
8 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{96}{16}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{52±44}{16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 44 ಗೆ 52 ಸೇರಿಸಿ.
x=6
16 ದಿಂದ 96 ಭಾಗಿಸಿ.
x=\frac{8}{16}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{52±44}{16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 52 ದಿಂದ 44 ಕಳೆಯಿರಿ.
x=\frac{1}{2}
8 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{8}{16} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
8x^{2}-52x+24=8\left(x-6\right)\left(x-\frac{1}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 6 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{1}{2} ನ್ನು ಬಳಸಿ.
8x^{2}-52x+24=8\left(x-6\right)\times \frac{2x-1}{2}
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ x ದಿಂದ \frac{1}{2} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
8x^{2}-52x+24=4\left(x-6\right)\left(2x-1\right)
8 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.