x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\frac{9+\sqrt{15}i}{16}\approx 0.5625+0.242061459i
x=\frac{-\sqrt{15}i+9}{16}\approx 0.5625-0.242061459i
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
8x\left(x-1\right)\left(x+1\right)=x^{2}-2x-3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. \left(x-1\right)\left(x+1\right) ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\left(8x^{2}-8x\right)\left(x+1\right)=x^{2}-2x-3
x-1 ದಿಂದ 8x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
8x^{3}-8x=x^{2}-2x-3
x+1 ರಿಂದು 8x^{2}-8x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
8x^{3}-8x-x^{2}=-2x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
8x^{3}-8x-x^{2}+2x=-3
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
8x^{3}-6x-x^{2}=-3
-6x ಪಡೆದುಕೊಳ್ಳಲು -8x ಮತ್ತು 2x ಕೂಡಿಸಿ.
8x^{3}-6x-x^{2}+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
8x^{3}-x^{2}-6x+3=0
ಸಮೀಕರಣವನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಲು ಮರುಹೊಂದಿಸಿ. ಪದಗಳನ್ನು ಗರಿಷ್ಠದಿಂದ ಕನಿಷ್ಠ ಪವರ್ಗೆ ಹೊಂದಿಸಿ.
±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
ಭಾಗಲಬ್ಧ ವರ್ಗಮೂಲ ಪ್ರಮೇಯದ ಮೂಲಕ, ಬಹುಪದೋಕ್ತಿಯ ತರ್ಕಬದ್ಧ ರೂಟ್ಗಳು \frac{p}{q} ಸವರೂಪದಲ್ಲಿವೆ, ಇಲ್ಲಿ p ಎನ್ನುವುದು 3 ಸ್ಥಿರ ಪದವನ್ನು ವಿಭಜಿಸುತ್ತದೆ ಮತ್ತು q ಎನ್ನುವುದು ಪ್ರಧಾನ ಗುಣಾಂಕ 8 ಅನ್ನು ವಿಭಜಿಸುತ್ತದೆ. ಎಲ್ಲಾ ಅಭ್ಯರ್ಥಿಗಳ ಪಟ್ಟಿ \frac{p}{q}.
x=-1
ನಿಖರ ಮೌಲ್ಯದ ಮೂಲಕ ಸಣ್ಣದರಿಂದ ಆರಂಭಿಸಿ ಎಲ್ಲ ಪೂರ್ಣಾಂಕ ಮೌಲ್ಯಗಳನ್ನು ಪ್ರಯತ್ನಿಸುವ ಮೂಲಕ ಒಂದು ಅಂತಹ ವರ್ಗವನ್ನು ಕಂಡುಕೊಳ್ಳಿ. ಯಾವುದೇ ಪೂರ್ಣಾಂಕ ಮೂಲವನ್ನು ಕಂಡುಕೊಳ್ಳದಿದ್ದರೆ, ನಮ್ಮ ಭಿನ್ನಾಂಶಗಳನ್ನು ಪ್ರಯತ್ನಿಸಿ.
8x^{2}-9x+3=0
ಅಪವರ್ತನ ಪ್ರಮೇಯದ ಪ್ರಕಾರ, x-k ಎನ್ನುವುದು ಪ್ರತಿ ವರ್ಗಮೂಲ k ಕ್ಕೆ ಬಹುಪದೋಕ್ತಿಯ ಅಪವರ್ತನವಾಗಿದೆ. 8x^{2}-9x+3 ಪಡೆಯಲು x+1 ರಿಂದ 8x^{3}-x^{2}-6x+3 ವಿಭಾಗಿಸಿ. ಫಲಿತಾಂಶವು 0 ಗೆ ಸಮಾಂತರವಾಗುವಲ್ಲಿ ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 8\times 3}}{2\times 8}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 8 ಅನ್ನು,b ಗೆ -9 ಅನ್ನು ಮತ್ತು c ಗೆ 3 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{9±\sqrt{-15}}{16}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=\frac{-\sqrt{15}i+9}{16} x=\frac{9+\sqrt{15}i}{16}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ 8x^{2}-9x+3=0 ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x\in \emptyset
ವೇರಿಯೇಬಲ್ ಸಮನಾಗಿರಲು ಸಾಧ್ಯವಾಗದ ಮೌಲ್ಯಗಳನ್ನು ತೆಗೆದುಹಾಕಿ.
x=-1 x=\frac{-\sqrt{15}i+9}{16} x=\frac{9+\sqrt{15}i}{16}
ಎಲ್ಲ ಕಂಡುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
x=\frac{9+\sqrt{15}i}{16} x=\frac{-\sqrt{15}i+9}{16}
x ವೇರಿಯೇಬಲ್ -1 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}