ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
c ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

8=20-c^{2}
20 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 16 ಸೇರಿಸಿ.
20-c^{2}=8
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-c^{2}=8-20
ಎರಡೂ ಕಡೆಗಳಿಂದ 20 ಕಳೆಯಿರಿ.
-c^{2}=-12
-12 ಪಡೆದುಕೊಳ್ಳಲು 8 ದಿಂದ 20 ಕಳೆಯಿರಿ.
c^{2}=\frac{-12}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
c^{2}=12
\frac{-12}{-1} ಭಿನ್ನಾಂಶವನ್ನು ಗಣಕ ಮತ್ತು ಛೇದದಿಂದ ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯನ್ನು ತೆಗೆದುಹಾಕುವ ಮೂಲಕ 12 ಗೆ ಸರಳೀಕರಿಸಬಹುದು.
c=2\sqrt{3} c=-2\sqrt{3}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
8=20-c^{2}
20 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 16 ಸೇರಿಸಿ.
20-c^{2}=8
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
20-c^{2}-8=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
12-c^{2}=0
12 ಪಡೆದುಕೊಳ್ಳಲು 20 ದಿಂದ 8 ಕಳೆಯಿರಿ.
-c^{2}+12=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳು, x^{2} ಪದದ ಜೊತೆಗೆ ಆದರೆ ಯಾವುದೇ x ಪದವಿಲ್ಲ, ಒಮ್ಮೆ ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಅವುಗಳನ್ನು ಇರಿಸಿದರೆ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ವರ್ಗ ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಇನ್ನೂ ಪರಿಹರಿಸಬಹುದು: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 0 ಮತ್ತು c ಗೆ 12 ಬದಲಿಸಿ.
c=\frac{0±\sqrt{-4\left(-1\right)\times 12}}{2\left(-1\right)}
ವರ್ಗ 0.
c=\frac{0±\sqrt{4\times 12}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{0±\sqrt{48}}{2\left(-1\right)}
12 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{0±4\sqrt{3}}{2\left(-1\right)}
48 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
c=\frac{0±4\sqrt{3}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
c=-2\sqrt{3}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{0±4\sqrt{3}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
c=2\sqrt{3}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{0±4\sqrt{3}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
c=-2\sqrt{3} c=2\sqrt{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.