ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

7x^{2}-4x+6=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 7\times 6}}{2\times 7}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 7, b ಗೆ -4 ಮತ್ತು c ಗೆ 6 ಬದಲಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 7\times 6}}{2\times 7}
ವರ್ಗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-28\times 6}}{2\times 7}
7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{16-168}}{2\times 7}
6 ಅನ್ನು -28 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{-152}}{2\times 7}
-168 ಗೆ 16 ಸೇರಿಸಿ.
x=\frac{-\left(-4\right)±2\sqrt{38}i}{2\times 7}
-152 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{4±2\sqrt{38}i}{2\times 7}
-4 ನ ವಿಲೋಮವು 4 ಆಗಿದೆ.
x=\frac{4±2\sqrt{38}i}{14}
7 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4+2\sqrt{38}i}{14}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{4±2\sqrt{38}i}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{38} ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{2+\sqrt{38}i}{7}
14 ದಿಂದ 4+2i\sqrt{38} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{38}i+4}{14}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{4±2\sqrt{38}i}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ದಿಂದ 2i\sqrt{38} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{38}i+2}{7}
14 ದಿಂದ 4-2i\sqrt{38} ಭಾಗಿಸಿ.
x=\frac{2+\sqrt{38}i}{7} x=\frac{-\sqrt{38}i+2}{7}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
7x^{2}-4x+6=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
7x^{2}-4x+6-6=-6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
7x^{2}-4x=-6
6 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{7x^{2}-4x}{7}=-\frac{6}{7}
7 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{4}{7}x=-\frac{6}{7}
7 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 7 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=-\frac{6}{7}+\left(-\frac{2}{7}\right)^{2}
-\frac{2}{7} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{4}{7} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{2}{7} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{4}{7}x+\frac{4}{49}=-\frac{6}{7}+\frac{4}{49}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{2}{7} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{4}{7}x+\frac{4}{49}=-\frac{38}{49}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{4}{49} ಗೆ -\frac{6}{7} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{2}{7}\right)^{2}=-\frac{38}{49}
ಅಪವರ್ತನ x^{2}-\frac{4}{7}x+\frac{4}{49}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{-\frac{38}{49}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{2}{7}=\frac{\sqrt{38}i}{7} x-\frac{2}{7}=-\frac{\sqrt{38}i}{7}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2+\sqrt{38}i}{7} x=\frac{-\sqrt{38}i+2}{7}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{2}{7} ಸೇರಿಸಿ.