ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=39 ab=7\left(-18\right)=-126
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 7n^{2}+an+bn-18 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,126 -2,63 -3,42 -6,21 -7,18 -9,14
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -126 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+126=125 -2+63=61 -3+42=39 -6+21=15 -7+18=11 -9+14=5
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-3 b=42
ಪರಿಹಾರವು 39 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(7n^{2}-3n\right)+\left(42n-18\right)
\left(7n^{2}-3n\right)+\left(42n-18\right) ನ ಹಾಗೆ 7n^{2}+39n-18 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
n\left(7n-3\right)+6\left(7n-3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ n ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 6 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(7n-3\right)\left(n+6\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 7n-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
n=\frac{3}{7} n=-6
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 7n-3=0 ಮತ್ತು n+6=0 ಪರಿಹರಿಸಿ.
7n^{2}+39n-18=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
n=\frac{-39±\sqrt{39^{2}-4\times 7\left(-18\right)}}{2\times 7}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 7, b ಗೆ 39 ಮತ್ತು c ಗೆ -18 ಬದಲಿಸಿ.
n=\frac{-39±\sqrt{1521-4\times 7\left(-18\right)}}{2\times 7}
ವರ್ಗ 39.
n=\frac{-39±\sqrt{1521-28\left(-18\right)}}{2\times 7}
7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-39±\sqrt{1521+504}}{2\times 7}
-18 ಅನ್ನು -28 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-39±\sqrt{2025}}{2\times 7}
504 ಗೆ 1521 ಸೇರಿಸಿ.
n=\frac{-39±45}{2\times 7}
2025 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{-39±45}{14}
7 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{6}{14}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{-39±45}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 45 ಗೆ -39 ಸೇರಿಸಿ.
n=\frac{3}{7}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{14} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
n=-\frac{84}{14}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{-39±45}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -39 ದಿಂದ 45 ಕಳೆಯಿರಿ.
n=-6
14 ದಿಂದ -84 ಭಾಗಿಸಿ.
n=\frac{3}{7} n=-6
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
7n^{2}+39n-18=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
7n^{2}+39n-18-\left(-18\right)=-\left(-18\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 18 ಸೇರಿಸಿ.
7n^{2}+39n=-\left(-18\right)
-18 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
7n^{2}+39n=18
0 ದಿಂದ -18 ಕಳೆಯಿರಿ.
\frac{7n^{2}+39n}{7}=\frac{18}{7}
7 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n^{2}+\frac{39}{7}n=\frac{18}{7}
7 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 7 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n^{2}+\frac{39}{7}n+\left(\frac{39}{14}\right)^{2}=\frac{18}{7}+\left(\frac{39}{14}\right)^{2}
\frac{39}{14} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{39}{7} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{39}{14} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}+\frac{39}{7}n+\frac{1521}{196}=\frac{18}{7}+\frac{1521}{196}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{39}{14} ವರ್ಗಗೊಳಿಸಿ.
n^{2}+\frac{39}{7}n+\frac{1521}{196}=\frac{2025}{196}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1521}{196} ಗೆ \frac{18}{7} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(n+\frac{39}{14}\right)^{2}=\frac{2025}{196}
ಅಪವರ್ತನ n^{2}+\frac{39}{7}n+\frac{1521}{196}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n+\frac{39}{14}\right)^{2}}=\sqrt{\frac{2025}{196}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n+\frac{39}{14}=\frac{45}{14} n+\frac{39}{14}=-\frac{45}{14}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=\frac{3}{7} n=-6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{39}{14} ಕಳೆಯಿರಿ.