ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=-74 ab=7\left(-120\right)=-840
ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 7x^{2}+ax+bx-120 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-840 2,-420 3,-280 4,-210 5,-168 6,-140 7,-120 8,-105 10,-84 12,-70 14,-60 15,-56 20,-42 21,-40 24,-35 28,-30
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -840 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-840=-839 2-420=-418 3-280=-277 4-210=-206 5-168=-163 6-140=-134 7-120=-113 8-105=-97 10-84=-74 12-70=-58 14-60=-46 15-56=-41 20-42=-22 21-40=-19 24-35=-11 28-30=-2
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-84 b=10
ಪರಿಹಾರವು -74 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(7x^{2}-84x\right)+\left(10x-120\right)
\left(7x^{2}-84x\right)+\left(10x-120\right) ನ ಹಾಗೆ 7x^{2}-74x-120 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
7x\left(x-12\right)+10\left(x-12\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 7x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 10 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-12\right)\left(7x+10\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-12 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
7x^{2}-74x-120=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-74\right)±\sqrt{\left(-74\right)^{2}-4\times 7\left(-120\right)}}{2\times 7}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-74\right)±\sqrt{5476-4\times 7\left(-120\right)}}{2\times 7}
ವರ್ಗ -74.
x=\frac{-\left(-74\right)±\sqrt{5476-28\left(-120\right)}}{2\times 7}
7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-74\right)±\sqrt{5476+3360}}{2\times 7}
-120 ಅನ್ನು -28 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-74\right)±\sqrt{8836}}{2\times 7}
3360 ಗೆ 5476 ಸೇರಿಸಿ.
x=\frac{-\left(-74\right)±94}{2\times 7}
8836 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{74±94}{2\times 7}
-74 ನ ವಿಲೋಮವು 74 ಆಗಿದೆ.
x=\frac{74±94}{14}
7 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{168}{14}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{74±94}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 94 ಗೆ 74 ಸೇರಿಸಿ.
x=12
14 ದಿಂದ 168 ಭಾಗಿಸಿ.
x=-\frac{20}{14}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{74±94}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 74 ದಿಂದ 94 ಕಳೆಯಿರಿ.
x=-\frac{10}{7}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-20}{14} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
7x^{2}-74x-120=7\left(x-12\right)\left(x-\left(-\frac{10}{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 12 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -\frac{10}{7} ನ್ನು ಬಳಸಿ.
7x^{2}-74x-120=7\left(x-12\right)\left(x+\frac{10}{7}\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.
7x^{2}-74x-120=7\left(x-12\right)\times \frac{7x+10}{7}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ x ಗೆ \frac{10}{7} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
7x^{2}-74x-120=\left(x-12\right)\left(7x+10\right)
7 ಮತ್ತು 7 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 7 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.