ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

7x^{2}+2x+9=8
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
7x^{2}+2x+9-8=8-8
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
7x^{2}+2x+9-8=0
8 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
7x^{2}+2x+1=0
9 ದಿಂದ 8 ಕಳೆಯಿರಿ.
x=\frac{-2±\sqrt{2^{2}-4\times 7}}{2\times 7}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 7, b ಗೆ 2 ಮತ್ತು c ಗೆ 1 ಬದಲಿಸಿ.
x=\frac{-2±\sqrt{4-4\times 7}}{2\times 7}
ವರ್ಗ 2.
x=\frac{-2±\sqrt{4-28}}{2\times 7}
7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-2±\sqrt{-24}}{2\times 7}
-28 ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-2±2\sqrt{6}i}{2\times 7}
-24 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-2±2\sqrt{6}i}{14}
7 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-2+2\sqrt{6}i}{14}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-2±2\sqrt{6}i}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{6} ಗೆ -2 ಸೇರಿಸಿ.
x=\frac{-1+\sqrt{6}i}{7}
14 ದಿಂದ -2+2i\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{6}i-2}{14}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-2±2\sqrt{6}i}{14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -2 ದಿಂದ 2i\sqrt{6} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{6}i-1}{7}
14 ದಿಂದ -2-2i\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
7x^{2}+2x+9=8
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
7x^{2}+2x+9-9=8-9
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 9 ಕಳೆಯಿರಿ.
7x^{2}+2x=8-9
9 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
7x^{2}+2x=-1
8 ದಿಂದ 9 ಕಳೆಯಿರಿ.
\frac{7x^{2}+2x}{7}=-\frac{1}{7}
7 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{2}{7}x=-\frac{1}{7}
7 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 7 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=-\frac{1}{7}+\left(\frac{1}{7}\right)^{2}
\frac{1}{7} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{2}{7} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{7} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{1}{7}+\frac{1}{49}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{7} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{6}{49}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{49} ಗೆ -\frac{1}{7} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{1}{7}\right)^{2}=-\frac{6}{49}
ಅಪವರ್ತನ x^{2}+\frac{2}{7}x+\frac{1}{49}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{-\frac{6}{49}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{1}{7}=\frac{\sqrt{6}i}{7} x+\frac{1}{7}=-\frac{\sqrt{6}i}{7}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{7} ಕಳೆಯಿರಿ.