ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

7\times 8+8\times 7x=2xx
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
7\times 8+8\times 7x=2x^{2}
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
56+56x=2x^{2}
56 ಪಡೆದುಕೊಳ್ಳಲು 7 ಮತ್ತು 8 ಗುಣಿಸಿ. 56 ಪಡೆದುಕೊಳ್ಳಲು 8 ಮತ್ತು 7 ಗುಣಿಸಿ.
56+56x-2x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
-2x^{2}+56x+56=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-56±\sqrt{56^{2}-4\left(-2\right)\times 56}}{2\left(-2\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -2, b ಗೆ 56 ಮತ್ತು c ಗೆ 56 ಬದಲಿಸಿ.
x=\frac{-56±\sqrt{3136-4\left(-2\right)\times 56}}{2\left(-2\right)}
ವರ್ಗ 56.
x=\frac{-56±\sqrt{3136+8\times 56}}{2\left(-2\right)}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-56±\sqrt{3136+448}}{2\left(-2\right)}
56 ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-56±\sqrt{3584}}{2\left(-2\right)}
448 ಗೆ 3136 ಸೇರಿಸಿ.
x=\frac{-56±16\sqrt{14}}{2\left(-2\right)}
3584 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-56±16\sqrt{14}}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{16\sqrt{14}-56}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-56±16\sqrt{14}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 16\sqrt{14} ಗೆ -56 ಸೇರಿಸಿ.
x=14-4\sqrt{14}
-4 ದಿಂದ -56+16\sqrt{14} ಭಾಗಿಸಿ.
x=\frac{-16\sqrt{14}-56}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-56±16\sqrt{14}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -56 ದಿಂದ 16\sqrt{14} ಕಳೆಯಿರಿ.
x=4\sqrt{14}+14
-4 ದಿಂದ -56-16\sqrt{14} ಭಾಗಿಸಿ.
x=14-4\sqrt{14} x=4\sqrt{14}+14
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
7\times 8+8\times 7x=2xx
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
7\times 8+8\times 7x=2x^{2}
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
56+56x=2x^{2}
56 ಪಡೆದುಕೊಳ್ಳಲು 7 ಮತ್ತು 8 ಗುಣಿಸಿ. 56 ಪಡೆದುಕೊಳ್ಳಲು 8 ಮತ್ತು 7 ಗುಣಿಸಿ.
56+56x-2x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
56x-2x^{2}=-56
ಎರಡೂ ಕಡೆಗಳಿಂದ 56 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-2x^{2}+56x=-56
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-2x^{2}+56x}{-2}=-\frac{56}{-2}
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{56}{-2}x=-\frac{56}{-2}
-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-28x=-\frac{56}{-2}
-2 ದಿಂದ 56 ಭಾಗಿಸಿ.
x^{2}-28x=28
-2 ದಿಂದ -56 ಭಾಗಿಸಿ.
x^{2}-28x+\left(-14\right)^{2}=28+\left(-14\right)^{2}
-14 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -28 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -14 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-28x+196=28+196
ವರ್ಗ -14.
x^{2}-28x+196=224
196 ಗೆ 28 ಸೇರಿಸಿ.
\left(x-14\right)^{2}=224
ಅಪವರ್ತನ x^{2}-28x+196. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-14\right)^{2}}=\sqrt{224}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-14=4\sqrt{14} x-14=-4\sqrt{14}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=4\sqrt{14}+14 x=14-4\sqrt{14}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 14 ಸೇರಿಸಿ.