ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image
ರಸಪ್ರಶ್ನೆ
Complex Number

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

6500=595n-15n^{2}
595-15n ದಿಂದ n ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
595n-15n^{2}=6500
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
595n-15n^{2}-6500=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 6500 ಕಳೆಯಿರಿ.
-15n^{2}+595n-6500=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
n=\frac{-595±\sqrt{595^{2}-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -15, b ಗೆ 595 ಮತ್ತು c ಗೆ -6500 ಬದಲಿಸಿ.
n=\frac{-595±\sqrt{354025-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
ವರ್ಗ 595.
n=\frac{-595±\sqrt{354025+60\left(-6500\right)}}{2\left(-15\right)}
-15 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-595±\sqrt{354025-390000}}{2\left(-15\right)}
-6500 ಅನ್ನು 60 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-595±\sqrt{-35975}}{2\left(-15\right)}
-390000 ಗೆ 354025 ಸೇರಿಸಿ.
n=\frac{-595±5\sqrt{1439}i}{2\left(-15\right)}
-35975 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{-595±5\sqrt{1439}i}{-30}
-15 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-595+5\sqrt{1439}i}{-30}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{-595±5\sqrt{1439}i}{-30} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5i\sqrt{1439} ಗೆ -595 ಸೇರಿಸಿ.
n=\frac{-\sqrt{1439}i+119}{6}
-30 ದಿಂದ -595+5i\sqrt{1439} ಭಾಗಿಸಿ.
n=\frac{-5\sqrt{1439}i-595}{-30}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{-595±5\sqrt{1439}i}{-30} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -595 ದಿಂದ 5i\sqrt{1439} ಕಳೆಯಿರಿ.
n=\frac{119+\sqrt{1439}i}{6}
-30 ದಿಂದ -595-5i\sqrt{1439} ಭಾಗಿಸಿ.
n=\frac{-\sqrt{1439}i+119}{6} n=\frac{119+\sqrt{1439}i}{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
6500=595n-15n^{2}
595-15n ದಿಂದ n ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
595n-15n^{2}=6500
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-15n^{2}+595n=6500
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-15n^{2}+595n}{-15}=\frac{6500}{-15}
-15 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n^{2}+\frac{595}{-15}n=\frac{6500}{-15}
-15 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -15 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n^{2}-\frac{119}{3}n=\frac{6500}{-15}
5 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{595}{-15} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
n^{2}-\frac{119}{3}n=-\frac{1300}{3}
5 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{6500}{-15} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
n^{2}-\frac{119}{3}n+\left(-\frac{119}{6}\right)^{2}=-\frac{1300}{3}+\left(-\frac{119}{6}\right)^{2}
-\frac{119}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{119}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{119}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1300}{3}+\frac{14161}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{119}{6} ವರ್ಗಗೊಳಿಸಿ.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1439}{36}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{14161}{36} ಗೆ -\frac{1300}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(n-\frac{119}{6}\right)^{2}=-\frac{1439}{36}
ಅಪವರ್ತನ n^{2}-\frac{119}{3}n+\frac{14161}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-\frac{119}{6}\right)^{2}}=\sqrt{-\frac{1439}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-\frac{119}{6}=\frac{\sqrt{1439}i}{6} n-\frac{119}{6}=-\frac{\sqrt{1439}i}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=\frac{119+\sqrt{1439}i}{6} n=\frac{-\sqrt{1439}i+119}{6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{119}{6} ಸೇರಿಸಿ.