ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}+9x+5=65
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
2x^{2}+9x+5-65=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 65 ಕಳೆಯಿರಿ.
2x^{2}+9x-60=0
-60 ಪಡೆದುಕೊಳ್ಳಲು 5 ದಿಂದ 65 ಕಳೆಯಿರಿ.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-60\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 9 ಮತ್ತು c ಗೆ -60 ಬದಲಿಸಿ.
x=\frac{-9±\sqrt{81-4\times 2\left(-60\right)}}{2\times 2}
ವರ್ಗ 9.
x=\frac{-9±\sqrt{81-8\left(-60\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-9±\sqrt{81+480}}{2\times 2}
-60 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-9±\sqrt{561}}{2\times 2}
480 ಗೆ 81 ಸೇರಿಸಿ.
x=\frac{-9±\sqrt{561}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{561}-9}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-9±\sqrt{561}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{561} ಗೆ -9 ಸೇರಿಸಿ.
x=\frac{-\sqrt{561}-9}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-9±\sqrt{561}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -9 ದಿಂದ \sqrt{561} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}+9x+5=65
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
2x^{2}+9x=65-5
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
2x^{2}+9x=60
60 ಪಡೆದುಕೊಳ್ಳಲು 65 ದಿಂದ 5 ಕಳೆಯಿರಿ.
\frac{2x^{2}+9x}{2}=\frac{60}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{9}{2}x=\frac{60}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{9}{2}x=30
2 ದಿಂದ 60 ಭಾಗಿಸಿ.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=30+\left(\frac{9}{4}\right)^{2}
\frac{9}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{9}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{9}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{9}{2}x+\frac{81}{16}=30+\frac{81}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{9}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{561}{16}
\frac{81}{16} ಗೆ 30 ಸೇರಿಸಿ.
\left(x+\frac{9}{4}\right)^{2}=\frac{561}{16}
ಅಪವರ್ತನ x^{2}+\frac{9}{2}x+\frac{81}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{561}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{9}{4}=\frac{\sqrt{561}}{4} x+\frac{9}{4}=-\frac{\sqrt{561}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{9}{4} ಕಳೆಯಿರಿ.