t ಪರಿಹರಿಸಿ
t=0.1
t=1.9
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{60\left(-t+1\right)^{2}}{60}=\frac{48.6}{60}
60 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\left(-t+1\right)^{2}=\frac{48.6}{60}
60 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 60 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
\left(-t+1\right)^{2}=0.81
60 ದಿಂದ 48.6 ಭಾಗಿಸಿ.
-t+1=\frac{9}{10} -t+1=-\frac{9}{10}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
-t+1-1=\frac{9}{10}-1 -t+1-1=-\frac{9}{10}-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
-t=\frac{9}{10}-1 -t=-\frac{9}{10}-1
1 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
-t=-\frac{1}{10}
\frac{9}{10} ದಿಂದ 1 ಕಳೆಯಿರಿ.
-t=-\frac{19}{10}
-\frac{9}{10} ದಿಂದ 1 ಕಳೆಯಿರಿ.
\frac{-t}{-1}=-\frac{\frac{1}{10}}{-1} \frac{-t}{-1}=-\frac{\frac{19}{10}}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t=-\frac{\frac{1}{10}}{-1} t=-\frac{\frac{19}{10}}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t=\frac{1}{10}
-1 ದಿಂದ -\frac{1}{10} ಭಾಗಿಸಿ.
t=\frac{19}{10}
-1 ದಿಂದ -\frac{19}{10} ಭಾಗಿಸಿ.
t=\frac{1}{10} t=\frac{19}{10}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}